An Exponential Improvement on the MST Heuristic for Minimum Energy Broadcasting in Ad Hoc Wireless Networks

  • Ioannis Caragiannis
  • Michele Flammini
  • Luca Moscardelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4596)


In this paper we present a new approximation algorithm for the Minimum Energy Broadcast Routing (MEBR) problem in ad hoc wireless networks that has exponentially better approximation factor than the well-known Minimum Spanning Tree (MST) heuristic. Namely, for any instance where a minimum spanning tree of the set of stations is guaranteed to cost at most ρ times the cost of an optimal solution for MEBR, we prove that our algorithm achieves an approximation ratio bounded by 2ln ρ − 2 ln 2 + 2. This result is particularly relevant for its consequences on Euclidean instances where we significantly improve previous results.


Wireless Network Span Tree Transmission Power Approximation Ratio Minimum Span Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambühl, C.: An optimal bound for the MST algorithm to compute energy efficient broadcast trees in wireless networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1139–1150. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Athanassopoulos, S., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Experimental comparison of algorithms for energy-efficient multicasting in ad hoc networks. In: Nikolaidis, I., Barbeau, M., Kranakis, E. (eds.) ADHOC-NOW 2004. LNCS, vol. 3158, pp. 183–196. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Čagalj, M., Hubaux, J., Enz, C.: Minimum-energy broadcast in all-wireless networks: NP-completeness and distribution issues. In: MobiCom 2002. Proceedings of the 8th Annual International Conference on Mobile Computing and Networking, pp. 172–182. ACM Press, New York (2002)CrossRefGoogle Scholar
  4. 4.
    Calinescu, G., Kapoor, S., Olshevsky, A., Zelikovsky, A.: Network lifetime and power assignment in ad-hoc wireless networks. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 114–126. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Calinescu, G., Mandoiu, I., Zelikovsky, A.: Symmetric connectivity with minimum power consumption in radio networks. In: Proceedings of the 2nd IFIP International Conference on Theoretical Computer Science, pp. 119–130. Kluwer, BV, Dordrecht (2002)Google Scholar
  6. 6.
    Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: New results for energy-efficient broadcasting in wireless networks. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 332–343. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Energy-efficient wireless network design. Theory of Computing Systems 39(5), 593–617 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cartigny, J., Simplot, D., Stojmenovic, I.: Localized minimum-energy broadcasting in ad-hoc networks. In: INFOCOM 2003. Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 2210–2217. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  9. 9.
    Clementi, A., Crescenzi, P., Penna, P., Rossi, G., Vocca, P.: On the complexity of computing minimum energy consumption broadcast subgraphs. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 121–131. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Conway, J.H., Sloane, N.J.A.: The kissing number proble and Bounds on kissing numbers (Ch. 2.1 and Ch. 13). In: Sphere Packings, Lattices, and Groups, 3rd edn. Springer, New York (1998)Google Scholar
  11. 11.
    Dong, Q., Banerjee, S., Adler, M., Misra, A.: Minimum energy reliable paths using unreliable wireless links. In: MobiHoc 2005. Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 449–459. ACM Press, New York (2005)CrossRefGoogle Scholar
  12. 12.
    Doshi, S., Bhandare, S., Brown, T.X.: An on-demand minimum energy routing protocol for a wireless ad hoc network. SIGMOBILE Mobile Computing and Communication Review 6(3), 50–66 (2002)CrossRefGoogle Scholar
  13. 13.
    Flammini, M., Klasing, R., Navarra, A., Perennes, S.: Improved approximation results for the minimum energy broadcasting problem. In: Proceedings of ACM Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), pp. 85–91. ACM Press, New York (2004)CrossRefGoogle Scholar
  14. 14.
    Flammini, M., Navarra, A., Perennes, S.: The ‘real’ approximation factor of the MST heuristic for the minimum energy broadcasting. ACM Journal of Experimental Algorithmics 11(Article no.2.10), 1–13 (2006)MathSciNetGoogle Scholar
  15. 15.
    Gilbert, E., Pollak, H.: Steiner minimal trees. SIAM Journal on Applied Mathematics 16, 1–29 (1968)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hac, A.: Wireless sensor network designs. John Wiley & Sons, Ltd, West Sussex, England (2004)Google Scholar
  17. 17.
    Kirousis, L., Kranakis, E., Krizanc, D., Pelc, A.: Power consumption in packet radio networks. Theoretical Computer Science 243(1-2), 289–305 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Klasing, R., Navarra, A., Papadopoulos, A., Perennes, S.: Adaptive broadcast consumption (ABC), a new heuristic and new bounds for the minimum energy broadcast routing problem. In: Mitrou, N.M., Kontovasilis, K., Rouskas, G.N., Iliadis, I., Merakos, L. (eds.) NETWORKING 2004. LNCS, vol. 3042, pp. 866–877. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Li, X., Wan, P.: Constructing minimum energy mobile wireless networks. SIGMOBILE Mobile Computing and Communication Review 5(4), 55–67 (2001)CrossRefGoogle Scholar
  20. 20.
    Liang, W.: Constructing minimum-energy broadcast trees in wireless ad hoc networks. In: MobiHoc 2002. Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 112–122. ACM Press, New York (2002)CrossRefGoogle Scholar
  21. 21.
    Navarra, A.: 3-d minimum energy broadcasting. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 240–252. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Rappaport, T.: Wireless communications: principles and practice. Prentice-Hall, Englewood Cliffs (1996)Google Scholar
  23. 23.
    Wan, P.-J., Calinescu, G., Li, X., Frieder, O.: Minimum energy broadcast routing in static ad hoc wireless networks. Wireless Networks 8(6), 607–617 (2002)zbMATHCrossRefGoogle Scholar
  24. 24.
    Wieselthier, J.-E., Nguyen, G.D., Ephremides, A.: On the construction of energy-efficient broadcast and multicast trees in wireless networks. In: INFOCOM 2000. Proceedings of the 19th Annual Joint Conference of the IEEE Computer and Communications Societies, pp. 585–594. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  25. 25.
    Zhao, F., Guibas, L.: Wireless sensor networks: an information processing approach. Morgan Kaufmann, San Francisco (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ioannis Caragiannis
    • 1
  • Michele Flammini
    • 2
  • Luca Moscardelli
    • 2
  1. 1.Research Academic Computer Technology Institute and, Dept. of Computer Engineering and Informatics, University of Patras, 26500 RioGreece
  2. 2.Dipartimento di Informatica, Università di L’Aquila, Via Vetoio, Coppito 67100, L’AquilaItaly

Personalised recommendations