Advertisement

Private Locally Decodable Codes

  • Rafail Ostrovsky
  • Omkant Pandey
  • Amit Sahai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4596)

Abstract

We consider the problem of constructing efficient locally decodable codes in the presence of a computationally bounded adversary. Assuming the existence of one-way functions, we construct efficient locally decodable codes with positive information rate and low (almost optimal) query complexity which can correctly decode any given bit of the message from constant channel error rate ρ. This compares favorably to our state of knowledge locally-decodable codes without cryptographic assumptions. For all our constructions, the probability for any polynomial-time adversary, that the decoding algorithm incorrectly decodes any bit of the message is negligible in the security parameter.

Keywords

Information Rate Query Complexity Security Parameter Good Code Pseudorandom Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: STOC, pp. 21–31 (1991)Google Scholar
  2. 2.
    Beimel, A., Ishai, Y.: Information-theoretic private information retrieval: A unified construction. In: ICALP, pp. 912–926 (2001)Google Scholar
  3. 3.
    Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.-F.: Breaking the o(n1/(2k-1)) barrier for information-theoretic private information retrieval. In: FOCS, pp. 261–270 (2002)Google Scholar
  4. 4.
    Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM 45(6), 965–981 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Deshpande, A., Jain, R., Kavitha, T., Radhakrishnan, J., Lokam, S.V.: Better lower bounds for locally decodable codes. In: IEEE Conference on Computational Complexity, pp. 184–193. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  6. 6.
    Gemmell, P., Lipton, R.J., Rubinfeld, R., Sudan, M., Wigderson, A.: Self-testing/correcting for polynomials and for approximate functions. In: STOC, pp. 32–42 (1991)Google Scholar
  7. 7.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Goldreich, O., Karloff, H.J., Schulman, L.J., Trevisan, L.: Lower bounds for linear locally decodable codes and private information retrieval. In: IEEE Conference on Computational Complexity, pp. 175–183. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  9. 9.
    Gopalana, P., Lipton, R.J., Ding, Y.Z.: Error correction against computationally bounded adversaries. In Manuscript (2004)Google Scholar
  10. 10.
    Justesen, J.: A class of constructive asymptotically good algebraic codes. IEEE Transactions on Information Theory 18, 652–656 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-correcting codes. In: STOC, pp. 80–86 (2000)Google Scholar
  12. 12.
    Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable codes via a quantum argument. In: STOC, pp. 106–115 (2003)Google Scholar
  13. 13.
    Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-private information retrieval. In: FOCS, pp. 364–373 (1997)Google Scholar
  14. 14.
    Langberg, M.: Private codes or succinct random codes that are (almost) perfect. In: FOCS, pp. 325–334 (2004)Google Scholar
  15. 15.
    Lipton, R.J.: A new approach to information theory. In: STACS, pp. 699–708 (1994)Google Scholar
  16. 16.
    Micali, S., Peikert, C., Sudan, M., Wilson, D.A.: Optimal Error Correction Against Computationally Bounded Noise. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, Springer, Heidelberg (2006)Google Scholar
  17. 17.
    Obata, K.: Optimal lower bounds for 2-query locally decodable linear codes. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 39–50. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Ostrovsky, R., Pandey, O., Sahai, A.: Private Locally Decodable Codes. available at http://eprint.iacr.org/2007/025/
  19. 19.
    Shiowattana, D., Lokam, S.V.: An optimal lower bound for 2-query locally decodable linear codes. Inf. Process. Lett. 97(6), 244–250 (2006)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Sipser, M., Spielman, D.A.: Expander codes. In: FOCS, pp. 566–576 (1994)Google Scholar
  21. 21.
    Smith, A.: Scrambling adversarial errors using few random bits. In: SODA (2007)Google Scholar
  22. 22.
    Sudan, M.: Efficient Checking of Polynomials and Proofs and the Hardness of Approximation Problems, PhD Thesis, University of California at Berkley (1992)Google Scholar
  23. 23.
    Wehner, S., de Wolf, R.: Improved lower bounds for locally decodable codes and private information retrieval. In: ICALP, pp. 1424–1436 (2005)Google Scholar
  24. 24.
    Woodruff, D.: New lower bounds for general locally decodable codes. In: ECCC TR07-006 (2007)Google Scholar
  25. 25.
    Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length. In: STOC (2007) Also appears on ECCC as TR06-127 under a different title.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Rafail Ostrovsky
    • 1
  • Omkant Pandey
    • 1
  • Amit Sahai
    • 1
  1. 1.Department of Computer Science, University of California, Los Angeles 90095 

Personalised recommendations