Parameterized Approximability of the Disjoint Cycle Problem

  • Martin Grohe
  • Magdalena Grüber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4596)


We give an fpt approximation algorithm for the directed vertex disjoint cycle problem. Given a directed graph G with n vertices and a positive integer k, the algorithm constructs a family of at least k/ρ(k) disjoint cycles of G if the graph G has a family of at least k disjoint cycles (and otherwise may still produce a solution, or just report failure). Here ρ is a computable function such that k/ρ(k) is nondecreasing and unbounded. The running time of our algorithm is polynomial.

The directed vertex disjoint cycle problem is hard for the parameterized complexity class W1, and to the best of our knowledge our algorithm is the first fpt approximation algorithm for a natural W1-hard problem.


approximation algorithms fixed-parameter tractability parameterized complexity theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N.: Disjoint directed cycles. Journal of Combinatorial Theory Series B 68(2), 167–178 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bang-Jensen, J., Gutin, G.: Digraphs. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  3. 3.
    Cai, L., Huang, X.: Fixed-parameter approximation: Conceptual framework and approximability results. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 96–108. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Grohe, M., Grüber, M.: On parameterized approximability. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 109–120. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized approximation algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 121–129. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Erdös, P., Pósa, L.: On the independent circuits contained in a graph. Canadian Journal of Mathematics 17, 347–352 (1965)zbMATHGoogle Scholar
  8. 8.
    Even, G., Naor, J.S., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Graham, R.L., Grötschel, M., Lovász, L. (eds.): Handbook of Combinatorics (volume II, chapter Ramsey theory), pp. 1331–1403. Elsevier Science, Amsterdam (1995)zbMATHGoogle Scholar
  11. 11.
    Grötschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, 2nd edn. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  12. 12.
    Guenin, B., Thomas, R.: Packing directed circuits exactly. To appear in Combinatorica (2006) Google Scholar
  13. 13.
    Gutin, G., Yeo, A.: Some parameterized problems on digraphs (Submitted 2006)Google Scholar
  14. 14.
    Marx, D.: Parameterized complexity and approximation algorithms. To appear in The Computer Journal (2006)Google Scholar
  15. 15.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  16. 16.
    Reed, B., Robertson, N., Seymour, P., Thomas, R.: Packing directed circuits. Combinatorica 16(4), 535–554 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Reed, B., Shepherd, F.: The gallai-younger conjecture for planar graphs. Combinatorica 16(4), 555–566 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Salavatipour, M., Verstraete, J.: Disjoint cycles: Integrality gap, hardness, and approximation. In: Jünger, M., Kaibel, V. (eds.) Integer Programming and Combinatorial Optimization. LNCS, vol. 3509, pp. 51–65. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Seymour, P.: Packing directed circuits fractionally. Combinatorica 15(2), 281–288 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Slivkins, A.: Parameterized tractability of edge-disjoint paths on directed acyclic graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 482–493. Springer, Heidelberg (2003)Google Scholar
  21. 21.
    Younger, D.: Graphs with interlinked directed circuits. In: Proceedings of the Midwest Symposium on Circuit Theory 2, pages XVI 2.1–XVI 2.7 (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Martin Grohe
    • 1
  • Magdalena Grüber
    • 1
  1. 1.Institut für Informatik, Humboldt-Universität, Unter den Linden 6, 10099 BerlinGermany

Personalised recommendations