Universal Algebra and Hardness Results for Constraint Satisfaction Problems

  • Benoît Larose
  • Pascal Tesson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4596)


We present algebraic conditions on constraint languages Γ that ensure the hardness of the constraint satisfaction problem CSP (Γ) for complexity classes L, NL, P, NP and Mod p L. These criteria also give non-expressibility results for various restrictions of Datalog. Furthermore, we show that if CSP(Γ) is not first-order definable then it is L-hard. Our proofs rely on tame congruence theory and on a fine-grain analysis of the complexity of reductions used in the algebraic study of CSPs. The results pave the way for a refinement of the dichotomy conjecture stating that each CSP(Γ) lies in P or is NP-complete and they match the recent classification of [1] for Boolean CSP. We also infer a partial classification theorem for the complexity of CSP(Γ) when the associated algebra of Γ is the idempotent reduct of a preprimal algebra.


Constraint Satisfaction Problem Simple Algebra Unary Type Universal Algebra Hardness Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.: The complexity of satisfiability problems: Refining Schaefer’s theorem. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 71–82. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Atserias, A.: On digraph coloring problems and treewidth duality. In: Proc. 21st Conf. on Logic in Comp. Sci. (LICS 2005), pp. 106–115 (2005)Google Scholar
  3. 3.
    Bulatov, A., Krokhin, A., Jeavons, P.: Constraint satisfaction problems and finite algebras. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 272–282. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Cohen, D., Jeavons, P.G.: The complexity of constraint languages. In: Handbook of Constraint Programming (2006)Google Scholar
  5. 5.
    Dalmau, V.: Linear Datalog and bounded path duality of relational structures. Logical Methods in Computer Science 1(1) (2005)Google Scholar
  6. 6.
    Dalmau, V., Egri, L., Larose, B., Tesson, P.: On the limits of expressivity of linear and symmetric Datalog. Document in preparation (2007)Google Scholar
  7. 7.
    Denecke, K., Wismath, S.L.: Universal Algebra and Applications in Theoretical Computer Science. CRC/C&H, Boca Raton (2002)zbMATHGoogle Scholar
  8. 8.
    Egri, L., Larose, B., Tesson, P.: Symmetric datalog and constraint satisfaction problems in logspace (Submitted, 2007)Google Scholar
  9. 9.
    Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM J. on Computing 28(1), 57–104 (1999)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Feder, T., Vardi, M.Y.: Homomorphism closed vs. existential positive. In: Feder, T., Vardi, M.Y. (eds.) Proc. 18th Symp. on Logic in Comp. Sci (LICS 2003), pp. 311–320 (2003)Google Scholar
  11. 11.
    Hobby, D., McKenzie, R.: The Structure of Finite Algebras. Contemporary Mathematics, vol. 76. American Mathematical Society, New York (1988)Google Scholar
  12. 12.
    Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  13. 13.
    Jeavons, P.: On the algebraic structure of combinatorial problems. Theor. Comput. Sci. 200(1-2), 185–204 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kolaitis, P.G., Vardi, M.Y.: On the expressive power of datalog: Tools and a case study. J. Comput. Syst. Sci. 51(1), 110–134 (1995)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Larose, B., Loten, C., Tardif, C.: A characterization of first-order constraint satisfaction problems. In: Proc. 21st Symp. on Logic in Comp, pp. 201–210 (2006)Google Scholar
  16. 16.
    Larose, B., Zádori, L.: Finite posets and topological spaces in locally finite varieties. Algebra Universalis 52(2-3), 119–136 (2005)CrossRefGoogle Scholar
  17. 17.
    Larose, B., Zádori, L.: Bounded width problems and algebras. Algebra Universalis (2006)Google Scholar
  18. 18.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. 10th ACM STOC, pp. 216–226. ACM Press, New York (1978)Google Scholar
  19. 19.
    Szendrei, A.: A survey on strictly simple algebras and minimal varieties. Research and Exposition in Mathematics, pp. 209–239. Heldermann Verlag (1992)Google Scholar
  20. 20.
    Valeriote, M.: A subalgebra intersection property for congruence distributive varieties. In: Canadian J. of Math. (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Benoît Larose
    • 1
  • Pascal Tesson
    • 2
  1. 1.Department of Mathematics and Statistics, Concordia University 
  2. 2.Département d’Informatique et de Génie Logiciel, Université Laval 

Personalised recommendations