Advertisement

Private Multiparty Sampling and Approximation of Vector Combinations

  • Yuval Ishai
  • Tal Malkin
  • Martin J. Strauss
  • Rebecca N. Wright
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4596)

Abstract

We consider the problem of private efficient data mining of vertically-partitioned databases. Each of several parties holds a column of a data matrix (a vector) and the parties want to investigate the componentwise combination of their vectors. The parties want to minimize communication and local computation while guaranteeing privacy in the sense that no party learns more than necessary. Sublinear-communication private protocols have been primarily been studied only in the two-party case. We give efficient multiparty protocols for sampling a row of the data matrix and for computing arbitrary functions of a row, where the row index is additively shared among two or more parties. We also give protocols for approximating the componentwise sum, minimum, or maximum of the columns in which the communication and the number of public-key operations are at most polynomial in the size of the small approximation and polylogarithmic in the number of rows.

Keywords

Oblivious Transfer Private Information Retrieval Secure Multiparty Computation Vector Combination Secure Function Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Gibbons, P., Matias, Y., Szegedy, M.: Tracking join and self-join sizes in limited storage. In: Proc. Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 10–20. ACM Press, New York (1999)CrossRefGoogle Scholar
  2. 2.
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: Proc. 22th ACM STOC, pp. 503–513 (1990)Google Scholar
  3. 3.
    Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 404–414. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52(2), 489–509 (2006)CrossRefGoogle Scholar
  5. 5.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptology 13(1), 143–202 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proc. 36th IEEE FOCS, pp. 41–50. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  7. 7.
    Cohen, E.: Size-estimation framework with applications to transitive closure and reachability. J. Computer and System Sciences 55(3), 441–453 (1997)MATHCrossRefGoogle Scholar
  8. 8.
    Cormode, G., Muthukrishnan, S.: Estimating dominance norms of multiple data streams. In: Proc. 11’th European Symposium on Algorithms, pp. 148–160 (2003)Google Scholar
  9. 9.
    Di Crescenzo, G., Malkin, T., Ostrovsky, R.: Single database private information retrieval implies oblivious transfer. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 122–138. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Damgard, I., Jurik, M.: A generalisation, a simplification and some applications of paillier’s probabilistic public-key system. Public Key Cryptography, 119–136 (2001)Google Scholar
  11. 11.
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Communications of the ACM 28, 637–647 (1985)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M., Wright, R.: Secure multiparty computation of approximations. ACM Transactions on Algorithms 2(3), 435–472 (2005). An earlier version of this paper appeared in ICALP 2001 (2001)Google Scholar
  13. 13.
    Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Computer and System Sciences 60(3), 592–692 (1998) A preliminary version appeared in 30th STOC (1998)Google Scholar
  16. 16.
    Gilbert, A., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Fast, small-space algorithms for approximate histogram maintenance. In: Proc. 34th ACM STOC, pp. 389–398. ACM Press, New York (2002)Google Scholar
  17. 17.
    Goldreich, O.: Secure multi-party computation (working draft, version 1.1) (1998), available at http://philby.ucsd.edu/cryptolib/BOOKS/oded-sc.html
  18. 18.
    Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: Proc. 19th ACM STOC, pp. 218–229. ACM Press, New York (1987)Google Scholar
  19. 19.
    Goldreich, O., Vainish, R.: How to solve any protocol problem—an efficiency improvement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–86. Springer, Heidelberg (1988)Google Scholar
  20. 20.
    Indyk, P., Woodruff, D.: Private polylogarithmic approximations and efficient matching. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 245–264. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Killian, J.: Founding cryptography on oblivious transfer. In: Proc. 20th ACM STOC, pp. 20–31 (1988)Google Scholar
  22. 22.
    Kushilevitz, E., Mansour, Y.: Learning decision trees using the fourier sprectrum. In: Proc. 23th ACM STOC, pp. 455–464. ACM Press, New York (1991)Google Scholar
  23. 23.
    Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database, computationally-private information retrieval. In: Proc. 38th IEEE FOCS, pp. 364–373. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  24. 24.
    Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 177–206. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  25. 25.
    Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Mann, E.: Private access to distributed information. Master’s thesis, Technion - Israel Institute of Technology, Haifa (1998)Google Scholar
  27. 27.
    Naor, M., Nissim, K.: Communication preserving protocols for secure function evaluation. In: Proc. 33th ACM STOC, pp. 590–599. ACM Press, New York (2001)Google Scholar
  28. 28.
    Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proc. 31st ACM STOC, pp. 245–254. ACM Press, New York (1999)Google Scholar
  29. 29.
    Naor, M., Pinkas, B.: Distributed oblivious transfer. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  30. 30.
    Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-81, Aiken Computation Laboratory, Harvard University (1981)Google Scholar
  31. 31.
    Stern, J.P.: A new and efficient all-or-nothing disclosure of secrets protocol. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yuval Ishai
    • 1
  • Tal Malkin
    • 2
  • Martin J. Strauss
    • 3
  • Rebecca N. Wright
    • 4
  1. 1.Computer Science Dept., Technion, Haifa 32000Israel
  2. 2.Dept. of Computer Science, Columbia University, New York, NY 10025USA
  3. 3.Depts. of Math and EECS, University of Michigan, Ann Arbor, MI 48109USA
  4. 4.Computer Science Dept., Stevens Institute of Technology, Hoboken, NJ 07030USA

Personalised recommendations