Skip to main content

Exotic Quantifiers, Complexity Classes, and Complete Problems

(Extended Abstract)

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4596)

Abstract

We define new complexity classes in the Blum-Shub-Smale theory of computation over the reals, in the spirit of the polynomial hierarchy, with the help of infinitesimal and generic quantifiers. Basic topological properties of semialgebraic sets like boundedness, closedness, compactness, as well as the continuity of semialgebraic functions are shown to be complete in these new classes. All attempts to classify the complexity of these problems in terms of the previously studied complexity classes have failed. We also obtain completeness results in the Turing model for the corresponding discrete problems. In this setting, it turns out that infinitesimal and generic quantifiers can be eliminated, so that the relevant complexity classes can be described in terms of usual quantifiers only.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-73420-8_20
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-73420-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Bro-Miltersen, P.: On the complexity of numerical analysis. In: Proc. 21st Ann. IEEE Conference on Computational Complexity, pp. 331–339. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  2. Bliss, G.A.: Algebraic functions. Dover Publications, New York (1966)

    MATH  Google Scholar 

  3. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1998)

    Google Scholar 

  4. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers. Bull. Amer. Math. Soc. 21, 1–46 (1989)

    MATH  CrossRef  MathSciNet  Google Scholar 

  5. Bochnak, J., Coste, M., Roy, M.F.: Géometrie algébrique réelle, Folge. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, vol. 12. Springer, Heidelberg (1987)

    MATH  Google Scholar 

  6. Bournez, O., Cucker, F., de Naurois, P.J., Marion, J.-Y.: Implicit complexity over an arbitrary structure: sequential and parallel polynomial time. J. Logic Comput. 15(1), 41–58 (2005)

    CrossRef  MathSciNet  Google Scholar 

  7. Bürgisser, P., Cucker, F.: Counting complexity classes for numeric computations I: Semilinear sets. SIAM J. Comp. 33, 227–260 (2003)

    MATH  CrossRef  Google Scholar 

  8. Bürgisser, P., Cucker, F.: Counting complexity classes for numeric computations II: Algebraic and semialgebraic sets. Journal of Complexity 22(2), 147–191 (2006)

    MATH  CrossRef  MathSciNet  Google Scholar 

  9. Bürgisser, P., Cucker, F., de Naurois, P.J.: The complexity of semilinear sets in succinct representation. Comp. Compl. 15, 197–235 (2006)

    MATH  CrossRef  Google Scholar 

  10. Cucker, F.: P R  ≠ NC R . Journal of Complexity 8, 230–238 (1992)

    MATH  CrossRef  MathSciNet  Google Scholar 

  11. Cucker, F.: On the Complexity of Quantifier Elimination: the Structural Approach. The Computer Journal 36, 399–408 (1993)

    CrossRef  MathSciNet  Google Scholar 

  12. Cucker, F., Yu, D.: On the power of real Turing machines over binary inputs. SIAM J. Comp. 26, 243–254 (1997)

    MATH  CrossRef  Google Scholar 

  13. Cucker, F., Koiran, P.: Computing over the reals with addition and order: Higher complexity classes. Journal of Complexity 11, 358–376 (1995)

    MATH  CrossRef  MathSciNet  Google Scholar 

  14. Cucker, F., Meer, K.: Logics which capture complexity classes over the reals. J. Symbolic Logic 64(1), 363–390 (1999)

    MATH  CrossRef  MathSciNet  Google Scholar 

  15. Cucker, F., Rosselló, F.: On the complexity of some problems for the Blum, Shub & Smale model. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 117–129. Springer, Heidelberg (1992)

    CrossRef  Google Scholar 

  16. Cucker, F., Shub, M.: Generalized knapsack problems and fixed degree separations. Theoret. Comp. Sci. 161, 301–306 (1996)

    MATH  CrossRef  MathSciNet  Google Scholar 

  17. Cucker, F., Torrecillas, A.: Two p-complete problems in the theory of the reals. Journal of Complexity 8, 454–466 (1992)

    MATH  CrossRef  MathSciNet  Google Scholar 

  18. Grädel, E., Meer, K.: Descriptive complexity theory over the real numbers. In: Grädel, E., Meer, K. (eds.) The mathematics of numerical analysis, Park City, UT. Lectures in Appl. Math, vol. 32, pp. 381–403. Amer. Math. Soc, Providence, RI (1996)

    Google Scholar 

  19. Kleene, S.C.: Recursive predicates and quantifiers. Trans. Amer. Math. Soc. 53, 41–73 (1943)

    MATH  CrossRef  MathSciNet  Google Scholar 

  20. Koiran, P.: Computing over the reals with addition and order. Theoret. Comp. Sci. 133, 35–47 (1994)

    MATH  CrossRef  MathSciNet  Google Scholar 

  21. Koiran, P.: A weak version of the Blum, Shub & Smale model. J. Comp. Syst. Sci. 54, 177–189 (1997)

    MATH  CrossRef  MathSciNet  Google Scholar 

  22. Koiran, P.: The real dimension problem is NP R -complete. Journal of Complexity 15(2), 227–238 (1999)

    MATH  CrossRef  MathSciNet  Google Scholar 

  23. Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. part I, II, III. J. Symb. Comp. 13(3), 255–352 (1992)

    MATH  MathSciNet  CrossRef  Google Scholar 

  24. Larry, J.: The polynomial-time hierarchy. Theoret. Comput. Sci. 3(1), 1–22 (1976/1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bürgisser, P., Cucker, F. (2007). Exotic Quantifiers, Complexity Classes, and Complete Problems. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds) Automata, Languages and Programming. ICALP 2007. Lecture Notes in Computer Science, vol 4596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73420-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73420-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73419-2

  • Online ISBN: 978-3-540-73420-8

  • eBook Packages: Computer ScienceComputer Science (R0)