A Lower Bound on Entanglement-Assisted Quantum Communication Complexity

  • Ashley Montanaro
  • Andreas Winter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4596)


We prove a general lower bound on the bounded-error entanglement-assisted quantum communication complexity of Boolean functions. The bound is based on the concept that any classical or quantum protocol to evaluate a function on distributed inputs can be turned into a quantum communication protocol. As an application of this bound, we give a very simple proof of the statement that almost all Boolean functions on n + n bits have communication complexity linear in n, even in the presence of unlimited entanglement.


Boolean Function Quantum Channel Communication Complexity Quantum Communication Communication Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aaronson, S., Ambainis, A.: Quantum search of spatial regions. Theory of Computing 1, 47–79 (2005) quant-ph/0303041MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ambainis, A., Schulman, L.J., Ta-Shma, A., Vazirani, U., Wigderson, A.: The quantum communication complexity of sampling. SIAM J. Comput. 32, 1570–1585 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alon, N., Spencer, J.: The probabilistic method. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (2000)zbMATHGoogle Scholar
  4. 4.
    Buhrman, H., deWolf, R.: Communication complexity lower bounds by polynomials. In: Proc. CCC 2001, pp. 120–130 (2001) cs.CC/9910010Google Scholar
  5. 5.
    Cleve, R., van Dam, W., Nielsen, M., Tapp, A.: Quantum entanglement and the communication complexity of the inner product function. In: Selected papers from the First NASA International Conference on Quantum Computing and Quantum Communications, pp.61–74, February 17-20 (1998) quant-ph/9708019Google Scholar
  6. 6.
    Fannes, M.: A continuity property of the entropy density for spin lattice systems. Commun. Math. Phys. 31, 291–294 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    van Dam, W., Hayden, P.: Renyi-entropic bounds on quantum communication (2002) quant-ph/0204093Google Scholar
  8. 8.
    Gavinsky, D., Kempe, J., de Wolf, R.: Strengths and weaknesses of quantum fingerprinting. In: Proc. CCC 2006, pp. 288–298 (2006) quant-ph/0603173Google Scholar
  9. 9.
    Hausladen, P., Jozsa, R., Schumacher, B., Westmoreland, M., Wootters, W.: Classical information capacity of a quantum channel. Phys. Rev. A 54(3), 1869–1876 (1996)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Holevo, A.S.: Bounds for the quantity of information transmittable by a quantum communications channel. Problemy Peredachi Informatsii 9(3), 3–11 (1973) English translation Problems of Information Transmission 9, 177–183 (1973)Google Scholar
  11. 11.
    Horn, R.A., Johnson, C.: Matrix analysis. Cambridge University Press, Cambridge (1996)Google Scholar
  12. 12.
    Jozsa, R., Schlienz, J.: Distinguishability of states and von Neumann entropy. Phys. Rev. A 62 012301 (2000) quant-ph/9911009Google Scholar
  13. 13.
    Klauck, H.: Lower bounds for quantum communication complexity. In: Proc. FOCS 2001, pp. 288–297 (2001) quant-ph/0106160Google Scholar
  14. 14.
    Kremer, I.: Quantum communication. Master’s thesis, Hebrew University (1995)Google Scholar
  15. 15.
    Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  16. 16.
    Linial, N., Shraibman, A.: Learning complexity vs. communication complexity. Manuscript (2006),
  17. 17.
    Linial, N., Shraibman, A.: Lower bounds in communication complexity based on factorization norms. In: Proc. STOC 2007 (to appear, 2007),
  18. 18.
    Nayak, A., Salzman, J.: On communication over an entanglement-assisted quantum channel. In: Proc. STOC 2002, pp. 698–704 (2002) quant-ph/0206122Google Scholar
  19. 19.
    Nielsen, M.A.: Quantum information theory. PhD thesis, University of New Mexico, Albuquerque (1998) quant-ph/0011036Google Scholar
  20. 20.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  21. 21.
    Raz, R.: Exponential separation of quantum and classical communication complexity, In: Proc. STOC 1999, pp. 358–367 (1999)Google Scholar
  22. 22.
    Razborov, A.A.: Quantum communication complexity of symmetric predicates. Izvestiya of the Russian Academy of Science 67, 159–176 (2003) quant-ph/ 0204025MathSciNetGoogle Scholar
  23. 23.
    Rényi, A.: Probability theory. North-Holland, Amsterdam (1970)Google Scholar
  24. 24.
    de Wolf, R.: Quantum communication and complexity. Theoretical Computer Science 287(1), 337–353 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Yao, A.: Some complexity questions related to distributive computing. In: Proc. STOC 1979, pp. 209–213 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ashley Montanaro
    • 1
  • Andreas Winter
    • 2
  1. 1.Department of Computer Science, University of Bristol, Bristol, BS8 1UB, U.K 
  2. 2.Department of Mathematics, University of Bristol, Bristol, BS8 1TW, U.K 

Personalised recommendations