Unbounded-Error One-Way Classical and Quantum Communication Complexity

  • Kazuo Iwama
  • Harumichi Nishimura
  • Rudy Raymond
  • Shigeru Yamashita
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4596)

Abstract

This paper studies the gap between quantum one-way communication complexity Q(f) and its classical counterpart C(f), under the unbounded-error setting, i.e., it is enough that the success probability is strictly greater than 1/2. It is proved that for any (total or partial) Boolean function f, Q(f) = ⌈C(f)/2 ⌉, i.e., the former is always exactly one half as large as the latter. The result has an application to obtaining an exact bound for the existence of (m,n,p)-QRAC which is the n-qubit random access coding that can recover any one of m original bits with success probability ≥ p. We can prove that (m,n, > 1/2)-QRAC exists if and only if m ≤ 22n− 1. Previously, only the non-existence of (22n,n, > 1/2)-QRAC was known.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaronson, S.: Limitation of quantum advice and one-way communication. Theory of Computing 1, 1–28 (2005)MathSciNetGoogle Scholar
  2. 2.
    Aaronson, S.: The learnability of quantum states, quant-ph/0608142Google Scholar
  3. 3.
    Aaronson, S., Ambainis, A.: Quantum search of spatial regions. Theory of Computing 1, 47–79 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ambainis, A., Nayak, A., Ta-shma, A., Vazirani, U.: Dense quantum coding and a lower bound for 1-way quantum automata. In: Proc. 31st STOC, pp. 376–383 (1999) Journal version appeared in J. ACM, 49, 496–511 (2002)Google Scholar
  5. 5.
    Bar-Yossef, Z., Jayram, T.S., Kerenidis, I.: Exponential separation of quantum and classical one-way communication complexity. In: Proc. 36th STOC, pp. 128–137 (2004)Google Scholar
  6. 6.
    Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and computation. In: Proc. 30th STOC, pp. 63–68 (1998)Google Scholar
  7. 7.
    Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87, Article no 167902 (2001)Google Scholar
  8. 8.
    Forster, J.: A linear lower bound on the unbounded error probabilistic communication complexity. J. Comput. Syst. Sci. 65, 612–625 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Forster, J., Krause, M., Lokam, S.V., Mubarakzjanov, R., Schmitt, N., Simon, H.U.: Relation between communication complexity, linear arrangements, and computational complexity. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FST TCS 2001. LNCS, vol. 2245, pp. 171–182. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Forster, J., Simon, H.U.: On the smallest possible dimension and the largest possible margin of linear arrangements representing given concept classes. Theoret. Comput. Sci. 350, 40–48 (2006)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., de Wolf, R.: Exponential separations for one-way quantum communication complexity, with applications to cryptography. In: Proc. 39th STOC (to appear). Also, quant-ph/06911209Google Scholar
  12. 12.
    Gavinsky, D., Kempe, J., de Wolf, R.: Strengths and weaknesses of quantum fingerprinting. In: Proc. 21st CCC, pp. 288–298 (2006)Google Scholar
  13. 13.
    Hayashi, M., Iwama, K., Nishimura, H., Raymond, R., Yamashita, S. (4,1)-quantum random access coding does not exist – one qubit is not enough to recover one of four bits. New J. Phys. 8, Article no. 129 (2006)Google Scholar
  14. 14.
    Jakóbczyk, L., Siennicki, M.: Geometry of Bloch vectors in two-qubit system. Phys. Lett. A 286, 383–390 (2001)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Klauck, H.: On quantum and probabilistic communication: Las Vegas and one-way protocols. In: Proc. 32nd STOC, pp. 644–651 (2000)Google Scholar
  16. 16.
    Klauck, H.: Lower bounds for quantum communication complexity. In: Proc. 42nd FOCS, pp. 288–297 (2001)Google Scholar
  17. 17.
    Kimura, G., Kossakowski, A.: The Bloch-vector space for N-level systems – the spherical-coordinate point of view. Open Sys. Information Dyn. 12, 207–229 (2005). Also, quant-ph/0408014MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge (1997)Google Scholar
  19. 19.
    Newman, I.: Private vs. common random bits in communication complexity. Inform. Process. Lett. 39, 67–71 (1991)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: Proc. 40th IEEE FOCS, pp. 369–376 (1999)Google Scholar
  21. 21.
    Nayak, A., Salzman, J.: Limits on the ability of quantum states to convey classical messages. J. ACM 53, 184–206 (2006)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, Cambridge (2000)Google Scholar
  23. 23.
    Paturi, R., Simon, J.: Probabilistic communication complexity. J. Comput. Syst. Sci. 33, 106–123 (1986)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Razborov, A.: Quantum communication complexity of symmetric predicates. Izvestiya Mathematics 67, 145–159 (2003)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Kazuo Iwama
    • 1
  • Harumichi Nishimura
    • 2
  • Rudy Raymond
    • 3
  • Shigeru Yamashita
    • 4
  1. 1.School of Informatics, Kyoto University, Kyoto 606-8501, Sakyo-ku, Yoshida-HonmachiJapan
  2. 2.School of Science, Osaka Prefecture University, Sakai 599-8531, Gakuen-choJapan
  3. 3.Tokyo Research Laboratory, IBM Japan, Yamato 242-8502, Simotsuruma 1623-14Japan
  4. 4.Graduate School of Information Science, Nara Institute of Science and Technology, Nara 630-0192, Ikoma, Takayama-cho 8916-5Japan

Personalised recommendations