Skip to main content

One-More Extension of Paillier Inversion Problem and Concurrent Secure Identification

  • Conference paper
  • 847 Accesses

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4582)

Abstract

In this paper, we revisit Paillier’s trapdoor one-way function [15], focusing on the computational problem underlying its one-wayness. We formulate a new computational problem that we call one-more Paillier inversion problem. It is a natural extension of Paillier inversion problem to the setting where adversaries have access to an inversion oracle and a challenge oracle. We study the relation between the proposed problem and the one-more RSA inversion problem introduced by Bellare et al. in [2]; we prove that the one-more Paillier inversion problem is hard if and only if the one-more RSA inversion problem is hard. Then we propose a new identification scheme; we show the assumed hardness of the one-more Paillier inversion problem leads to a proof that the proposed identification scheme achieves security against concurrent impersonation attack. Compared with the known RSA-related identification schemes, the proposed identification scheme is only slightly inefficient than the best known GQ scheme, but is more efficient than Okamoto’s.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)

    Google Scholar 

  2. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology 16(3), 185–215 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Bellare, M., Palacio, A.: GQ and Schnorr identification Schemes: proofs of security against impersonation under active and concurrent attack. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  4. Catalano, D., Gennaro, R., Howgrave-Graham, N., Nguyen, P.Q.: Paillier’s cryptosystem revisited. In: Proceedings of the 8th ACM conference on Computer and Communications Security, pp. 206–214. ACM Press, New York (2001)

    CrossRef  Google Scholar 

  5. Cohen, J.D., Fischer, M.: A robust and verifiable cryptographically secure election scheme. In: Proceedings of the 26th Annual IEEE Symposium on Foundations of Computer Science 1985, pp. 372–382 (1985)

    Google Scholar 

  6. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  7. Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  8. Feige, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. Journal of Cryptology 1(2), 77–94 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Galbraith, S.D.: Elliptic curve Paillier schemes. Journal of Cryptology 15(2), 129–138 (2002)

    MATH  MathSciNet  Google Scholar 

  10. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Guillou, L., Quisquater, J.: A practical zero-knowledge protocol fitted to security microprocesors minimizing both transmission and memory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)

    Google Scholar 

  12. Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues. In: Proceedings of 5th Symposium on Computer and Communications Security, pp. 59–66. ACM Press, New York (1998)

    Google Scholar 

  13. Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)

    Google Scholar 

  14. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  15. Paillier, P.: Public-Key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Javier Lopez Pierangela Samarati Josep L. Ferrer

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, Y. (2007). One-More Extension of Paillier Inversion Problem and Concurrent Secure Identification. In: Lopez, J., Samarati, P., Ferrer, J.L. (eds) Public Key Infrastructure. EuroPKI 2007. Lecture Notes in Computer Science, vol 4582. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73408-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73408-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73407-9

  • Online ISBN: 978-3-540-73408-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics