Multi-attribute Text Classification Using the Fuzzy Borda Method and Semantic Grades

  • Eugene Levner
  • David Alcaide
  • Joaquin Sicilia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4578)


We consider the problem of automatic classification of text documents, in particular, scientific abstracts and use two types of classifiers: ordinal and numerical. For the first type we use a fuzzy extension of the Borda voting method while for the second type we use a fuzzy Borda method in combination with the semantic grading.


Fuzzy Logic Fuzzy Number Linguistic Variable Borda Count Fuzzy Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alcaide, D.: Ranking of ecological risks related to wastewater management. In: Zaidi, M.K. (ed.) Wastewater Reuse - Risk Assessment, Decision-Making and Environmental Security. Proceedings of the NATO Advanced Research Workshop, Istanbul, Turkey, 12-16 (October 2006). NATO Science for Peace and Security Series, Springer, Heidelberg (2007)Google Scholar
  2. 2.
    Alexandrov, M., Gelbukh, A., Makagonov, P.: Some keyword-based characteristics for evaluation of thematic structure of multidisciplinary documents. In: Proc. of Intern. Conf. CICLing 2000 (2000)Google Scholar
  3. 3.
    Alexandrov, M., Gelbukh, A., Rosso, P.: An approach to clustering abstracts. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 275–285. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Cortes, C., Vapnik, V.: Support vector networks. Machine learning 20, 273–297 (1995)zbMATHGoogle Scholar
  5. 5.
    Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., Slattery, S.: Learning to extract symbolic knowledge from the World Wide Web. In: Proceedings of the Fifteenth National Conference on Artificial Intellligence (AAAI-98), pp. 509–516 (1994)Google Scholar
  6. 6.
    Garcia-Lapresta, J.L., Martinez-Panero, M.: A fuzzy Borda count in multi-person decisin making. In: Trzaskalik, T., Michnik, J. (eds.) Multiple objective and goal programming: Recent Developments, Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Han, E.S., Karypis, G., Kumar, V.: Text categorization using weight adjusted k-nearest neighbour classification. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 53–65. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Lang, K.: Newsweeder: Learning to filter netnews. In: Machine Learning: Proceedings of the Twelfth International Conference (ICML 1995), pp. 331–339 (1995)Google Scholar
  9. 9.
    Levis, D., Ringuette, M.: A comparison of two learning algorithms for text classification.In: the 3rd Symposium on Document Analysis and Information Retrieval, pp. 81–93 (1994)Google Scholar
  10. 10.
    Levner, E., Alcaide, D., Benayahu, Y.: Environmental risk ranking: Theory and applications for emergency planning. Scientific Israel - Technological Advantages 8(1-2), 11–21 (2006)Google Scholar
  11. 11.
    Mahdavi, I., Sharma, R.R.K., Amiri, Z.R.: Formulation for web document classification: transforming the quadratic problem into 0-1 integer linear. International Journal of Digital Management 1 (1), 63–70 (2006)Google Scholar
  12. 12.
    Makagonov, P., Alexandrov, M., Gelbukh, A.: Selection of typical documents in a document flow. In: Mastorakis, N., Kluev, V.(eds.) Advances in Communications and Software Technologies, pp. 197–202, WSEAS Press (2002) ISBN 960-8052-71-8Google Scholar
  13. 13.
    Mamdani, E.H.: Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers C-26(12), 1182–1191 (1977)CrossRefGoogle Scholar
  14. 14.
    MATLAB 2005, Fuzzy logic toolbox user’s guide The MathWorks, Inc (2005)Google Scholar
  15. 15.
    Pazzani, M.J., Muramatsu, J., Billsus, D.: Syskill and Webert: Identifying interesting Web sites. In: Proceedings of the 13 National Conference on Artificial Intelligence, pp. 54–56 (1996)Google Scholar
  16. 16.
    Stein, B., Meyer zu Eissen, S.: Automatic document categorization: interpreting the performance of clustering algorithms. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 254–266. Springer, Heidelberg (2003)Google Scholar
  17. 17.
    Stein, B., Niggemann, O.: On the nature of structure and its identification. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 122–134. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Yang, Y., Pedersen, J.P.: Feature selection in statistical learning of text categorization. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 412–420 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Eugene Levner
    • 1
  • David Alcaide
    • 2
  • Joaquin Sicilia
    • 2
  1. 1.Holon Institute of Technology, HolonIsrael
  2. 2.University of La Laguna, La Laguna, TenerifeSpain

Personalised recommendations