Advertisement

Particular Treatment Procedures

  • Barbara Deschler
  • Cornelius Waller
  • Monika Engelhardt
  • Antonia Müller
  • Michael Luebbert
  • Jürgen Finke
  • Hartmut Bertz
  • Gerald Illerhaus
  • Anna-Katharina Kaskel
  • A. Mackensen
  • Hendrik Veelken
  • F. M. Rosenthal
  • Claudia I. Müller
  • Jürgen Scheele
  • Uwe Martens
Chapter

Keywords

Stem Cell Umbilical Cord Blood Total Body Irradiation Graft Versus Host Disease Hematopoietic Cell Transplantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oakley EJ, Vant Zant G. Unraveling the complex regulation of stem cells: implications for aging and cancer. Leukemia 2007;21:612–21PubMedGoogle Scholar
  2. 2.
    Papayannapoulou T. Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 2004;103:1580–5CrossRefGoogle Scholar
  3. 3.
    Rocha V, Labopin M, Sanz G et al. Transplants of umbilical cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med 2004;351:2276–85PubMedCrossRefGoogle Scholar
  4. 4.
    Sauvageau G, Iscove NN, Humphries RK. In vitro and in vivo expansion of hematopoietic stem cells. Oncogene 2004;23:7223–32PubMedCrossRefGoogle Scholar
  5. 5.
    Siena S, Schiavo R, Pedrazzoli P et al. Therapeutic relevance of CD34+ cell dose in blood cell transplantation for cancer therapy. J Clin Oncol 2000;18:1360–77PubMedGoogle Scholar
  6. 6.
    Sorrentino BP. Clinical strategies for expansion of haematopoietic stem cells. Nat Rev Immunol 2004;4:878–88PubMedCrossRefGoogle Scholar
  7. 7.
    Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 2000;287:1442–6PubMedCrossRefGoogle Scholar
  8. 8.
    http://stemcells.alphamedpress.org/ Stem CellsGoogle Scholar
  9. 9.
    http://www.marrow.org/ National Marrow Donor ProgramGoogle Scholar
  10. 10.
    http://www.bmtinfonet.org/ BMT InfoNetGoogle Scholar
  11. 11.
    http://stemcells.nih.gov/index.asp NIH Stem Cell InfoGoogle Scholar
  12. 12.
    http://stemcell.princeton.edu Stem Cell DatabaseGoogle Scholar
  13. 1.
    Antin JH. Long-term care after hematopoietic cell transplantation in adults. N Engl J Med 2002;347:36–42PubMedCrossRefGoogle Scholar
  14. 2.
    Devetten M, Armitage JO. Hematopoietic cell transplantation: progress and obstacles. Ann Oncol 2007;18:1450–6PubMedCrossRefGoogle Scholar
  15. 3.
    Gratwohl A, Baldomero H, Frauendorfer K et al. EBMT activity survey 2004 and changes in disease indication over the past 15 years. Bone Marrow Transpl 2006;37:1069–85CrossRefGoogle Scholar
  16. 4.
    Jansen J, Hanks S, Thompson JM et al. Transplantation of hematopoietic stem cells from the peripheral blood. J Cell Mol Med 2005;9:37–50PubMedCrossRefGoogle Scholar
  17. 5.
    Kessinger A, Sharp JG. The whys and hows of haematopoietic progenitor and stem cell mobilization. Bone Marrow Transpl 2003;31:319–29CrossRefGoogle Scholar
  18. 6.
    Majhail NS, Ness KK, Burns LJ et al. Late effects in survivors of Hodgkin’s and Non-Hodkin’s lymphoma treated with autologous hematopoietic cell transplantation. Biol Blood Marrow Transpl 2007;13:1–7Google Scholar
  19. 1.
    http://www.ebmt.org EBMT, Eur Grp Blood Marrow
 TransplGoogle Scholar
  20. 2.
    http://www.ibmtr.org Blood Marrow Transpl RegistryGoogle Scholar
  21. 3.
    http://www.asbmt.org/ Am Soc Blood Marrow TransplGoogle Scholar
  22. 4.
    http://www.bmtnet.org/ Blood Marrow Transpl NetGoogle Scholar
  23. 5.
    http://www.cdc.gov/mmwr/preview/mmwrhtml/rr4910a1.htm CDC, GuidelinesGoogle Scholar
  24. 6.
    http://www.emedicine.com/ped/topic2593.htm E-medicineGoogle Scholar
  25. 1.
    Appelbaum FR. Dose intensity and the toxicity and efficacy of allogeneic hematopoietic cell transplantation. Leukemia 2005;19:171–5PubMedCrossRefGoogle Scholar
  26. 2.
    Bertz H, Potthoff K, Finke J. Allogeneic stem-cell transplantation from related and unrelated donors in older patients with myeloid leukemia. J Clin Oncol 2003:21:1480–4PubMedCrossRefGoogle Scholar
  27. 3.
    Butcher BW, Collins RH. The graft-versus-lymphoma-effect: clinical review and future opportunities. Bone Marrow Transplant 2005;36:1–17PubMedCrossRefGoogle Scholar
  28. 4.
    Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med 2006;354:1813–26PubMedCrossRefGoogle Scholar
  29. 5.
    Deeg HJ. How I treat refractory acute GVHD. Blood 2007;109:4119–26PubMedCrossRefGoogle Scholar
  30. 6.
    Grathwohl A, Baldomero H, Frauendorfer K et al. Results of the EBMT activity survey 2005 on haematopoietic stem cell transplantation: focus on increasing use of unrelated donors. Bone Marrow Transplant 2007;39:71–87CrossRefGoogle Scholar
  31. 7.
    Schoemans H, Theunissen K, Maertens J et al. Adult umbilical cord blood transplantation. Bone Marrow Transplant 2006;38:83–93PubMedCrossRefGoogle Scholar
  32. 1.
    http://www.ebmt.org EBMT, Eur Grp Blood Marrow TransplGoogle Scholar
  33. 2.
    http://www.asbmt.org ASBMT, Am Soc Blood Marrow TransplGoogle Scholar
  34. 3.
    http://www.bmtnet.org Blood and Marrow Transplant NetworkGoogle Scholar
  35. 4.
    http://www.nature.com/bmt/index.html Bone Marrow Transpl JournalGoogle Scholar
  36. 5.
    http://www.bmtinfonet.org Blood and Marrow Transplant InformationGoogle Scholar
  37. 6.
    http://www.bloodline.net Bloodline, Hematology EducationGoogle Scholar
  38. 7.
    http://www.marrow.org National Marrow Donor ProgramGoogle Scholar
  39. 8.
    http://www.ibmtr.org International Bone Marrow Transplant RegistryGoogle Scholar
  40. 1.
    Hübel K, Engert A. Granulocyte transfusion therapy for treatment of infections after cytotoxic chemotherapy. Onkologie 2003;26:73–9PubMedCrossRefGoogle Scholar
  41. 2.
    Mousset S, Hermann S, Klein SA et al. Prophylactic and interventional granulocyte transfusion in patients with haematological malignancies and life-threatening infections during neutropenia. Ann Hematol 2005;84:234–41CrossRefGoogle Scholar
  42. 3.
    Price TH. Granulocyte transfusion: current status. Semin Hematol 2007;44:15–23PubMedCrossRefGoogle Scholar
  43. 4.
    Robinson SP, Marks DI. Granulocyte transfusions in the G-CSF era. Where do we stand? Bone Marrow Transplant 2004;34:839–46PubMedCrossRefGoogle Scholar
  44. 1.
    http://www.aabb.org/ American Association of Blood BanksGoogle Scholar
  45. 1.
    Banchereau J, Palucka A. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005;5:296–306PubMedCrossRefGoogle Scholar
  46. 2.
    Blattmann JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses. Science 2004;305:200–5CrossRefGoogle Scholar
  47. 3.
    Brentjens RJ, LAtouche JB, Santos E et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 2003;9:279–86PubMedCrossRefGoogle Scholar
  48. 4.
    Lake RA, Robinson BW. Immunotherapy and chemotherapy: a practical partnership. Nat Rev Cancer 2005;5:397–405PubMedCrossRefGoogle Scholar
  49. 5.
    Mapara MY, Sykes M. Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. J Clin Oncol 2004;22:1136–51PubMedCrossRefGoogle Scholar
  50. 6.
    Ribas A, Butterfiled LH, Glaspy JA et al. Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol 2003;21:2415–32PubMedCrossRefGoogle Scholar
  51. 7.
    Steinmann RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007;449:419–26CrossRefGoogle Scholar
  52. 1.
    http://www.cancerresearch.org Cancer Research InstituteGoogle Scholar
  53. 2.
    http://www.cancersupportivecare.com/immunotherapy.html Cancer ImmunotherapyGoogle Scholar
  54. 3.
    http://www.meds.com/immunotherapy/intro.html Immunotherapy TrainingGoogle Scholar
  55. 4.
    http://www.cancerimmunotherapy.org Assoc Immunother CancerGoogle Scholar
  56. 5.
    http://www.meniscus.com/horizons/2-1.pdf Cancer ImmunotherapyGoogle Scholar
  57. 1.
    Baum C, Düllmann J, Li Z et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003;101:2099–114PubMedCrossRefGoogle Scholar
  58. 2.
    Eder IE, Haag P, Bartsch G et al. Gene therapy strategies in prostate cancer. Curr Gene Ther 2005;5:1–10PubMedGoogle Scholar
  59. 3.
    Lusky M. Good manufacturing practice production of adenoviral vectors for clinical trials. Hum Gene Ther 2005;16:281–91PubMedCrossRefGoogle Scholar
  60. 4.
    Manilla P, Rebello T, Afable C et al. Regulatory considerations for novel gene therapy products: a review of the process leading to the first clinical lentiviral vector. Hum Gene Ther 2005;16:17–25PubMedCrossRefGoogle Scholar
  61. 5.
    Nathawani AC, Davidoff AM, Linch DC. A review of gene therapy for haematological disorders. Br J Haematol 2005;128:3–17CrossRefGoogle Scholar
  62. 6.
    Neff T, Beard BC, Kiem HP et al. Survival of the fittest: in vivo selection and stem cell gene therapy. Blood 2006;107:1751–60PubMedCrossRefGoogle Scholar
  63. 1.
    http://www.esgct.org/ European Society of Gene TherapyGoogle Scholar
  64. 2.
    http://www.asgt.org/ American Society of Gene TherapyGoogle Scholar
  65. 3.
    http://www.iscgt.org.uk/ Intl Society for Cancer Gene TherapyGoogle Scholar
  66. 4.
    http://www.mdanderson.org/departments/genetherapy/ MD Anderson Gene Therapy CenterGoogle Scholar
  67. 5.
    http://www.euregenethy.org European Gene Therapy NetworkGoogle Scholar
  68. 6.
    http://www.cancer.gov/cancertopics/
factsheet/Therapy/gene/ NCI, CancernetGoogle Scholar
  69. 1.
    Carmeliet P. Angiogenesis in health and disease. Nature Med 2003;6:653–60Google Scholar
  70. 2.
    Fayette J, Soria JC, Armand JP et al. Use of angiogenesis inhibitors in tumour treatment. Eur J Cancer 2005;41:1109–16PubMedCrossRefGoogle Scholar
  71. 3.
    Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nature Med 2003;9:669–76PubMedCrossRefGoogle Scholar
  72. 4.
    Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002;6(suppl 16):15–18Google Scholar
  73. 5.
    Keyhani A, Jendiroba DB, Freireich EJ. Angiogenesis and leukemia. Leuk Res 2001;25:639–45PubMedCrossRefGoogle Scholar
  74. 6.
    Podar K, Anderson KC. The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 2005;105:1383–95PubMedCrossRefGoogle Scholar
  75. 7.
    Timar J, Dome B, Fazekas K et al. Angiogenesis-dependent diseases and angiogenesis therapy. Pathol Oncol Res 2001;7:85–94PubMedCrossRefGoogle Scholar
  76. 8.
    Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer 2005;5:423–35PubMedCrossRefGoogle Scholar
  77. 1.
    http://www.oncolink.upenn.edu/ OncolinkGoogle Scholar
  78. 2.
    http://www.angio.org/ Angiogenesis FoundationGoogle Scholar
  79. 3.
    http://www.cancer.gov/clinicaltrials/developments/anti-angio-table NCI, Angiogenesis InhibitorsGoogle Scholar
  80. 4.
    http://www.cancer.gov/cancertopics/
understandingcancer/angiogenesis NCI, Angiogenesis TutorialGoogle Scholar
  81. 5.
    http://www.angioworld.com/angiogenesis.htm AngioworldGoogle Scholar
  82. 1.
    Bhalla KN. Heat shock protein 90 modulators in hematologic neoplasms. ASCO Educational Book 42nd Annual Meeting, 2006, pp 141–6Google Scholar
  83. 2.
    Buckingham S. The major world of microRNAs. Horizon Symposia. Understanding the RNAissance. May 2003. Nature Publishing GroupGoogle Scholar
  84. 3.
    Carter TA et al. Inhibition of drug resistant mutants of Abl, Kit, and EGF receptor kinases. Proc Natl Acad Sci 2005;102:11011–16PubMedCrossRefGoogle Scholar
  85. 4.
    Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 2004;3:318–29PubMedCrossRefGoogle Scholar
  86. 5.
    Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 2006;6:259–69PubMedCrossRefGoogle Scholar
  87. 6.
    Keen N, Taylor S. Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 2004;4:927–36PubMedCrossRefGoogle Scholar
  88. 7.
    Kelland LR. Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics: current status and future prospects. Eur J Cancer 2005;41:971–9PubMedCrossRefGoogle Scholar
  89. 8.
    Krutzfeldt J et al. Silencing of microRNAs in vivo with “antagomirs”. Nature 2005;438:685–9PubMedCrossRefGoogle Scholar
  90. 9.
    Shay JW, Wright WE. Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discov 2006;5:577–84PubMedCrossRefGoogle Scholar
  91. 10.
    Solit DB. Heat shock protein 90 as therapeutic target in solid tumors. ASCO Educational Book 42nd Annual Meeting, 2006, pp 136–40Google Scholar
  92. 11.
    Stevenson M. Therapeutic potential of RNA interference. New Engl J Med 2004;351:1772–7PubMedCrossRefGoogle Scholar
  93. 1.
    http://www.rnaiweb.com The RNAi WebGoogle Scholar
  94. 2.
    http://microrna.sanger.ac.uk/ miRBaseGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Barbara Deschler
    • 1
  • Cornelius Waller
    • 1
  • Monika Engelhardt
    • 1
  • Antonia Müller
    • 1
  • Michael Luebbert
    • 2
  • Jürgen Finke
    • 3
  • Hartmut Bertz
    • 4
  • Gerald Illerhaus
    • 1
  • Anna-Katharina Kaskel
    • 5
  • A. Mackensen
  • Hendrik Veelken
    • 2
  • F. M. Rosenthal
    • 6
  • Claudia I. Müller
    • 1
  • Jürgen Scheele
    • 2
  • Uwe Martens
    • 5
  1. 1.Department of Hematology and OncologyUniversity Medical CenterFreiburgGermany
  2. 2.Department of Hematology and OncologyUniversity Medical CenterFreiburgGermany
  3. 3.Department of Hematology and OncologyUniversity Medical CenterFreiburgGermany
  4. 4.Department of Hematology and OncologyUniversity Medical CenterFreiburgGermany
  5. 5.Department of Hematology and OncologyUniversity Medical CenterFreiburgGermany
  6. 6.CellGenix Technologie Transfer GmbHFreiburgGermany

Personalised recommendations