Skip to main content

Digital Homeomorphisms in Deformable Registration

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4584))

Abstract

A common goal in deformable registration applications is to produce a spatial transformation that is diffeomorphic, thereby preserving the topology of structures being transformed. Because this constraint is typically enforced only on the continuum, however, topological changes can still occur within discretely sampled images. This work discusses the notion of homeomorphisms in digital images, and how it differs from the diffeomorphic/homeomorphic concepts in continuous spaces commonly used in medical imaging. We review the differences and problems brought by considering functions defined on a discrete grid, and propose a practical criterion for enforcing digital homeomorphisms in the context of atlas-based segmentation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grenander, U., Miller, M.I.: Computational anatomy: an emerging discipline. Q. Appl. Math. LVI(4), 617–694 (1998)

    Google Scholar 

  2. Thompson, P.M., Toga, A.W.: A framework for computational anatomy. Computing and Visualization in Science 5, 1–12 (2002)

    Article  Google Scholar 

  3. Resnick, S.M., Pham, D.L., Kraut, M.A., Zonderman, A.B., Davatzikos, C.: Longitudinal MRI studies of older adults: A shrinking brain. J. Neuroscience 23(8), 3295–3301 (2003)

    Google Scholar 

  4. Thompson, P., Hayashi, K., Sowell, E., Gogtay, N., Giedd, J., Rapoport, J., de Zubicaray, G., Janke, A., Rose, S., Semple, J., Doddrell, D., Wang, Y., van Erp, T., Cannon, T., Toga, A.: Mapping cortical change in Alzheimer’s disease, brain development, and schizophrenia. NeuroImage, Special Issue on Mathematics in Brain Imaging (2004)

    Google Scholar 

  5. Gerig, G., Joshi, S., Fletcher, T., Gorczowski, K., Xu, S., Pizer, S., Styner, M.: Statistics of populations of images and its embedded objects: Driving applications in neuroimaging. In: Proc. IEEE Int. Symp. Biomedical Imaging, Arlington 2006 (2006)

    Google Scholar 

  6. Christensen, G.E.: Deformable shape models for anatomy. Electrical Engineering D.Sc. Dissertation, Washington University, St. Louis, Missouri (1994)

    Google Scholar 

  7. Christensen, G.E., Joshi, S.C., Miller, M.I.: Volumetric transformation of brain anatomy. IEEE Trans. Medical Imaging 16(6), 864–877 (1997)

    Article  Google Scholar 

  8. Christensen, G.E., Johnson, H.J.: Consistent image registration. IEEE Trans. Medical Imaging 20(7), 568–582 (2001)

    Article  Google Scholar 

  9. Rohde, G.K., Aldroubi, A., Dawant, B.M.: The adaptive bases algorithm for intensity-based nonrigid image registration. IEEE Trans. Medical Imaging 22(11), 1470–1479 (2003)

    Article  Google Scholar 

  10. Avants, B.B., Gee, J.C.: Shape averaging with diffeomorphic flows for atlas creation. In: Proc. IEEE Int. Symp. Biomedical Imaging, pp. 595–598. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  11. Narayanan, R., Fessler, J.A., Park, H., Meyer, C.H.: Diffeomorphic nonlinear transformations: a local parametric approach for image registration. In: Proc. Int. Conf. Information Processing in Medical Imaging, Glenwood Springs 2005 (2005)

    Google Scholar 

  12. Noblet, V., Heinrich, C., Heitz, F., Armspach, J.-P.: 3D deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization. IEEE Trans. Image Processing 14(5), 553–566 (2005)

    Article  Google Scholar 

  13. Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Medical Imaging 18, 712–721 (1999)

    Article  Google Scholar 

  14. Shen, D., Davatzikos, C.: Hammer: Hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Medical Imaging 21(11) (2002)

    Google Scholar 

  15. Vemuri, B.C., Ye, J., Chen, Y., Leonard, C.M.: Image registration via level-set motion: Applications to atlas-based segmentation. Medical Image Analysis 20(1), 1–20 (2003)

    Article  Google Scholar 

  16. Kybic, J., Unser, M.: Fast parametric elastic image registration. IEEE Trans. Image Processing 12(11), 1427–1442 (2003)

    Article  Google Scholar 

  17. Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing 48(3), 357–393 (1989)

    Article  Google Scholar 

  18. Bertrand, G., Couprie, M.: A model for digital topology. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 229–241. Springer, Heidelberg (1999)

    Google Scholar 

  19. Henle, M. (ed.): A Combinatorial Introduction to topology. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  20. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  21. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: Proc. SIGGRAPH’87 1987, vol. 21, pp. 163–169 (1987)

    Google Scholar 

  22. O’Neill, B.: Elementary Differential Geometry. Academic Press, San Diego (1997)

    MATH  Google Scholar 

  23. Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Analysis and Machine Intelligence 25(6), 755–768 (2003)

    Article  Google Scholar 

  24. Malandain, G., Bertrand, G., Ayache, N.: Topological segmentation of discrete surfaces. Int. J. Computer Vision 10(2), 183–197 (1993)

    Article  Google Scholar 

  25. Bertrand, G.: Simple points, topological numbers and geodesic neighborhood in cubic grids. Pattern Recognition Letters 15(10), 1003–1011 (1994)

    Article  Google Scholar 

  26. Couprie, M., Bezerra, F., Bertrand, G.: Topological operators for grayscale image processing. J. Electronic Imaging 10(4), 1003–1015 (2001)

    Article  Google Scholar 

  27. Mangin, J.F., Frouin, V., Bloch, I., Régis, J., López-Krahe, J.: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J. Mathematical Imaging and Vision 5, 297–318 (1995)

    Article  Google Scholar 

  28. Worth, A.: Internet brain seg mentation repository (1996), http://www.cma.mgh.harvard.edu/ibsr/

  29. Bazin, P.L., Pham, D.: Topology-preserving tissue classification of magnetic resonance brain images. In: IEEE Trans. Medical Imaging, Special Issue on Computational Neuroanatomy (in press) (2007)

    Google Scholar 

  30. Ellingsen, L.M., Prince, J.L.: Mjolnir: Deformable image registration using feature diffusion. In: Proc. SPIE Medical Imaging Conf., San Diego (2006)

    Google Scholar 

  31. Bai, Y., Prince, J.L.: Octree-based topology-preserving isosurface simplification. In: Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR’06), New York, IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bazin, PL., Ellingsen, L.M., Pham, D.L. (2007). Digital Homeomorphisms in Deformable Registration. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics