Skip to main content

Neurodynamics of Intentional Behavior Generation

  • Chapter
  • 1426 Accesses

Part of the Understanding Complex Systems book series (UCS)

Abstract

The chapter reviews mechanisms of generation and utilization of knowledge in human cognitive activity and in artificial intelligence systems. First we explore experience-based methods, including top-down symbolic approaches, which address knowledge processing in humans. Symbolic theories of intelligence fall short of explaining and implementing strategies routinely produced by human intelligence. Connectionist methods are rooted in our understanding of the operation of brains and nervous systems, and they gain popularity in constructing intelligent devices. Contrary to top-down symbolic methods, connectionism uses bottom-up emergence to generate intelligent behaviors. Recently, computational intelligence, cognitive science and neuroscience have achieved a level of maturity that allows integration of top-down and bottom-up approaches, in modeling the brain.

We present a dynamical approach to higher cognition and intelligence based on the model of intentional action-perception cycle. In this model, meaningful knowledge is continuously created, processed, and dissipated in the form of sequences of oscillatory patterns of neural activity distributed across space and time, rather than via manipulation of certain symbol system. Oscillatory patterns can be viewed as intermittent representations of generalized symbol systems, with which brains compute. These dynamical symbols are not rigid but flexible and they disappear soon after they have been generated through spatio-temporal phase transitions, at the rate of 4–5 patterns per second in human brains. Human cognition performs a granulation of the seemingly homogeneous temporal sequences of perceptual experiences into meaningful and comprehendible chunks of concepts and complex behavioral schemas. They are accessed during future action selection and decisions. This biologically-motivated computing using dynamic patterns provides an alternative to the notoriously difficult symbol grounding problem and it has been implemented in computational and robotic environments.

Keywords

  • Mobile Robot
  • Amplitude Modulation
  • Dynamic Logic
  • Intentional Behavior
  • Symbolic Approach

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turing A. M. Computing machinery and intelligence. Mind, 59:433–460, 1950.

    CrossRef  MathSciNet  Google Scholar 

  2. J. V. Neumann. The computer and the brain. New Haven, CT, Yale Univ. Press, 1958.

    MATH  Google Scholar 

  3. A. Newell and H. A. Simon. Human problem solving. Englewood Cliffs, NJ: Prentice-Hall, 1972.

    Google Scholar 

  4. Newell A. Physical symbol systems. Cognitive Science, 4:135–183, 1980.

    CrossRef  Google Scholar 

  5. A. Newell. Unified theories of cognition. Cambridge, MA: Harvard University Press, 1990.

    Google Scholar 

  6. Harter D. and Kozma R. Aperiodic dynamics and the self-organization of cognitive mapsin autonomous agents. Int. J. of Intelligent Systems, 21:955–971, 2006.

    CrossRef  MATH  Google Scholar 

  7. Laird J. E., Newell A., and Rosenbloom P. S. Soar: An architecture for general intelligence. Artificial Intelligence, 33:1–64, 1987.

    CrossRef  Google Scholar 

  8. Anderson J. A., Silverstein J. W., Ritz, S. A. Jones, and R. S. Distinctive features, categorical perception, and probability learning: Some applications of a neural model. Psychological Review, 84:413–451, 1977.

    CrossRef  Google Scholar 

  9. H. L. Dreyfus. What Computers Still Can’t Do - A Critique of Artificial Reason. Cambridge, MA, MIT Press, 1992.

    Google Scholar 

  10. Mataric M. J. and Brooks R. A. Cambrian Intelligence, chapter Learning a distributed map representation based on navigation behaviors, pages 37–58. Cambridge, MA: The MIT Press, 1999.

    Google Scholar 

  11. A. Clark. Mindware: An Introduction to the Philosophy of Cognitive Science. Oxford University Press, 2001.

    Google Scholar 

  12. L. I. Perlovsky. Neural Networks and Intellect. Oxford Univ. Press, New York, NY, 2001.

    Google Scholar 

  13. D. E. Rumelhart and J. L. McClelland. Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA, MIT Press, 1986.

    Google Scholar 

  14. C. Bishop. Neural networks for pattern recognition. Oxford University Press, 1995.

    Google Scholar 

  15. Haykin S. Neural networks - A comprehensive foundation. Prentice Hall, NJ, 1998.

    Google Scholar 

  16. Towell G. G. and Shavlik J. W. Knowledge-based artificial neural networks. Artificial Intelligence, 70:119–165, 1994.

    CrossRef  MATH  Google Scholar 

  17. Sporns O., Almassy N., and Edelman G. M. Plasticity in value systems and its role in adaptive behavior. Adaptive Behavior, 7(3-4), 1999.

    Google Scholar 

  18. G. M. Edelman and G. Tononi. A Universe of Consciousness: How Matter Becomes Imagination. Basic Books, New York, N.Y., 2000.

    Google Scholar 

  19. Vershure P.M., Krose B., and Pfeifer R. Distributed adaptive control: The self-organization of behavior. Robotics and Autonomous Systems, 9:181–196, 1992.

    CrossRef  Google Scholar 

  20. R. Pfeifer and C. Scheier. Understanding Intelligence. Cambridge, MA, MIT Press, 1999.

    Google Scholar 

  21. Vershure P.M. and Althaus P. A real-world rational agent: Unifying old and new ai. Cognitive Science, 27(4):561–590, 2003.

    CrossRef  Google Scholar 

  22. W. J. Freeman. Mass Action in the Nervous System. Academic Press, New York, 1975.

    Google Scholar 

  23. Kozma. R. Freeman. W.J. Chaotic resonance - methods and applications for robust classification of noisy and variable patterns. Int. J. Bifurcation and Chaos, 11:1607–1629, 2001.

    Google Scholar 

  24. Katchalsky A., Rowland V., and Huberman B. Dynamic patterns of brain cell assemblies. Neuroscience Res.Program Bull., 12, 1974.

    Google Scholar 

  25. H. Haken. Synergetics: An Introduction. Berlin: Springer-Verlag, 1983.

    MATH  Google Scholar 

  26. J. A. S. Kelso. Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA, MIT Press, 1995.

    Google Scholar 

  27. J.A.S. Kelso and D. A. Engstrom. The complementary nature. Cambridge, MA, MIT Press, 2006.

    Google Scholar 

  28. Freeman W.J., Burke B.C., and Holmes M.D. Aperiodic phase re-setting in scalp eeg of beta-gamma oscillations by state transitions at alpha-theta rates. Hum. Brain Mapp., 19:248–272, 2003.

    CrossRef  Google Scholar 

  29. Freeman W.J. Origin, structure, and role of background eeg activity. part 3. neural frame classification. Clin. Neurophysiology, 116:1118–1129, 2005.

    CrossRef  Google Scholar 

  30. Changeux J-P. and Dehaene S. Neuronal models of cognitive functions. Cognition, 33: 63–109, 1989.

    CrossRef  Google Scholar 

  31. Tsuda I. Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Beh. and Brain Sci., 24(5):793–810, 2001.

    CrossRef  Google Scholar 

  32. Lehmann D, Strik WK, Henggeler B, Koenig T, and Koukkou M. Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. visual imagery and abstract thoughts. Int. J Psychophysiol., 29:1–11, 1998.

    CrossRef  Google Scholar 

  33. Fingelkurts A .A. and Fingelkurts A. A. Operational architectonics of the human brain biopotential field: Towards solving the mind-brain problem. Mind and Brain, 2:262–296, 2001.

    Google Scholar 

  34. Fingelkurts A .A. and Fingelkurts A. A. Making complexity simpler: multivariability and metastability in the brain. Internat J.Neurosci, 114:843–862, 2004.

    CrossRef  Google Scholar 

  35. Barrie J.M., Freeman W.J., and Lenhart M. Modulation by discriminative training ofspatial patterns of gamma eeg amplitude and phase in neocortex of rabbits. J. Neurophysiol., 76: 520–539, 1996.

    Google Scholar 

  36. Ohl FW Scheich H and Freeman WJ. Change in pattern of ongoing cortical activity with auditory category learning. Nature, 412:733–736, 2001.

    CrossRef  Google Scholar 

  37. Ohl FW, Deliano M, Scheich H, and Freeman WJ. Early and late patterns of stimulus-related activity in auditory cortex of trained animals. Biol. Cybernetics, 88:374–379, 2003.

    CrossRef  MATH  Google Scholar 

  38. Bressler S.L. Cortical coordination dynamics and the disorganization syndrome in schizophrenia. Neuropsychopharmacology, 28:S35–S39, 2003.

    CrossRef  Google Scholar 

  39. Bressler S.L. and Kelso J.A.S. Cortical coordination dynamics and cognition. Trends in Cognitive Sciences, 5:26–36, 2001.

    CrossRef  Google Scholar 

  40. Le Van Quyen M, Foucher J, Lachaux J-P, Rodriguez E, Lutz A, Martinerie J, and Varela F. Comparison of hilbert transform and wavelet methods for the analysis of neuronal synchrony. J. Neurosci. Meth., 111:83–98, 2001.

    CrossRef  Google Scholar 

  41. Werner G. Perspectives on the neuroscience of cognition and consciousness. BioSystems, 2006.

    Google Scholar 

  42. B. J. Baars. A cognitive theory of consciousness. Cambridge Univ. Press, MA, 1988.

    Google Scholar 

  43. Freeman W.J. Origin, structure, and role of background eeg activity. part 2. analytic amplitude. Clin. Neurophysiology, 115:2077–2088, 2004.

    CrossRef  Google Scholar 

  44. I. Prigogine. From Being to Becoming: Time and Complexity in the Physical Sciences. WH Freeman, San Francisco, 1980.

    Google Scholar 

  45. Lachaux J-P, Rodriquez E, Martinerie J, and Varela FA. Measuring phase synchrony in brain signals. Hum. Brain Mapp., 8:194–208, 1999.

    CrossRef  Google Scholar 

  46. Quiroga RQ Kraskov A Kreuz T Grassberger P. Performance of different synchronization measures in real data: A case study on electroencephalographic signals. PhysicalRev E, 6504(U645-U658):art. no. 041903, 2002.

    Google Scholar 

  47. Demirer R.M., Kozma R., Caglar M., and Polatoglu Y. Hilbert transform optimization to detect cortical phase transitions in beta-gamma band. (Submitted), 2006.

    Google Scholar 

  48. S. Kauffman. The Origins of Order - Self-Organization and Selection in Evolution. Oxford Univ. Press, 1993.

    Google Scholar 

  49. Crutchfield J.P. The calculi of emergence: Computation, dynamics, and induction. Physica D, 75:11–54, 1994.

    CrossRef  MATH  Google Scholar 

  50. Watts D.J. Strogatz S.H. Collective dynamics of “small-world” networks. Nature, 393:440–442, 1998.

    CrossRef  Google Scholar 

  51. Bressler S.L. Understanding cognition through large-scale cortical networks. Current Directions in Psychological Science, 11:58–61, 2002.

    CrossRef  Google Scholar 

  52. D. Watts. Six Degrees: The Science of a Connected Age. New York: Norton, 2003.

    Google Scholar 

  53. Wang XF and Chen GR. Complex networks: small-world, scale-free and beyond. IEEE Trans. Circuits Syst., 31:6–20, 2003.

    Google Scholar 

  54. Albert R. and Barabási A.L. Statistical mechanics of complex networks. Reviews of Modern Physics, 74:47, 2002.

    CrossRef  MathSciNet  Google Scholar 

  55. Barabási A.L. and E. Bonabeau. Scale-free networks. Scientific American, 288:60–69, 2003.

    CrossRef  Google Scholar 

  56. Bollobas B. and Riordan O. Handbook of graphs and networks, chapter Results on scale-free random graphs, pages 1–34. Wiley-VCH, Weinheim, 2003.

    Google Scholar 

  57. Ingber L. Neocortical Dynamics and Human EEG Rhythms, chapter Statistical mechanics of multiple scales of neocortical interactions, pages 628–681. New York: Oxford U.P., 1995.

    Google Scholar 

  58. Hoppensteadt F.C. and Izhkevich E.M. Thalamo-cortical interactions modeled by weakly connected oscillators: could the brain use fm radio principles? BioSystems, 48:85–94, 1998.

    CrossRef  Google Scholar 

  59. Friston K.J. The labile brain. i. neuronal transients and nonlinear coupling. Phil Trans R Soc Lond B, 355:215–236, 2000.

    CrossRef  Google Scholar 

  60. Linkenkaer-Hansen K, Nikouline VM, Palva JM, and Iimoniemi R.J. Long-range temporal correlations and scaling behavior in human brain oscillations. J. Neurosci., 15:1370–1377, 2001.

    Google Scholar 

  61. K. Kaneko and I. Tsuda. Complex Systems: Chaos and Beyond. A Constructive Approach with Applications in Life Sciences. Springer Verlag, 2001.

    Google Scholar 

  62. Kozma R., Freeman W.J., and Erdi P. The kiv model - nonlinear spatio-temporal dynamics of the primordial vertebrate forebrain. Neurocomputing, 52-54:819–825, 2003.

    CrossRef  Google Scholar 

  63. Stam CJ, Breakspear M, van Cappellen van Walsum A.M, and van Dijk BW. Nonlinear synchronization in eeg and whole-head recordings of healthy subjects. Hum Brain Mapp, 19:63–78, 2003.

    CrossRef  Google Scholar 

  64. Kozma R., Puljic M., Bollobas B., Balister P., and Freeman W.J. Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol. Cybernetics, 92:367–379, 2005.

    CrossRef  MATH  MathSciNet  Google Scholar 

  65. Balister P., Bollobas B., and Kozma R. Large deviations for mean field models of probabilistic cellular automata. Random Structures and Algorithms, 29:399–415, 2006.

    CrossRef  MATH  MathSciNet  Google Scholar 

  66. Bak P., Tang C., and Wiesenfeld K. Phys. Rev. Lett., 59:381, 1987.

    CrossRef  MathSciNet  Google Scholar 

  67. P. Bak. How Nature Works - The Science of Self-Organized Criticality. Springer Verlag, N.Y., 1996.

    MATH  Google Scholar 

  68. H. J. Jensen. Self-organized criticality - Emergent behavior in physical and biological systems. Cambridge University Press, 1998.

    Google Scholar 

  69. Chang H.J. and Freeman W.J. Parameter optimization in models of the olfactory neural system. Neural Networks, 9:1–14, 1996.

    CrossRef  Google Scholar 

  70. Freeman W.J., Chang H.J., Burke B.C., Rose P.A., and Badler J. Taming chaos: stabilization of aperiodic attractors by noise. IEEE Trans. Circ. and Syst. I., 44:989–996, 1997.

    CrossRef  MathSciNet  Google Scholar 

  71. Xu D. and Principe J. Dynamical analysis of neural oscillators in an olfactory cortexmodel. IEEE Trans. Neur. Netw., 15:1053–1062, 2004.

    CrossRef  Google Scholar 

  72. Ilin R. and Kozma R. Stability of coupled excitatory-inhibitory neural populations and application to control of multi-stable systems. Physics Lett A, 360(1):66–83, 2006.

    CrossRef  MATH  Google Scholar 

  73. Gutierrez-Galvez A. and Gutierrez-Osuna R. Contrast enhancement of sensor-array patterns through hebbian/antihebbian learning. Proc. 11th Int. Symp. Olfaction and Elect. Nose, Barcelona, Spain, 2005.

    Google Scholar 

  74. Chang H.J., Freeman W.J., and Burke B.C. Optimization of olfactory model in software to give 1/f power spectra reveals numerical instabilities in solutions governed by aperiodic(chaotic) attractors. Neural Networks, 11:449–466, 1998.

    CrossRef  Google Scholar 

  75. Freeman W.J., Kozma R., and Werbos P.J. Biocomplexity - adaptive behavior in complex stochastic dynamical systems. BioSystems, 59(2):109–123, 2001.

    CrossRef  Google Scholar 

  76. Beliaev I. and Kozma R. Time series prediction using chaotic neural networks on the cats benchmark test. Neurocomputing (in press), 2007.

    Google Scholar 

  77. Harter D. and Kozma R. Chaotic neurodynamics for autonomous agents. IEEE Trans. Neural Networks, 16(4):565–579, 2005.

    CrossRef  Google Scholar 

  78. Kozma R. and Muthu S. Implementing reinforcement learning in the chaotic kiv model using mobile robot aibo. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems IROS’04, Sendai, Japan, 2004.

    Google Scholar 

  79. Kozma R., Wong D., Demirer M., and Freeman W.J. Learrning intentional behavior in the k-model of the amygdala and enthorhinal cortex with the cortico-hippocampal formation. Neurocomputing, 65-66:23–30, 2005.

    CrossRef  Google Scholar 

  80. Huntsberger T., Tunstel E., and Kozma R. Intelligence for Space Robotics, chapter Onboard learning strategies for planetary surface rovers, pages 403–422. TCI Press, San Antonio, TX, 2006.

    Google Scholar 

  81. W. J. Freeman. Neurodynamics: An Exploration of Mesoscopic Brain Dynamics. London, U.K., Springer-Verlag, 2000.

    MATH  Google Scholar 

  82. Kozma R. and Freeman W.J. Basic principles of the kiv model and its application to the navigation problem. J. Integrative Neurosci., 2:125–140, 2003.

    CrossRef  Google Scholar 

  83. Nunez R.E. and Freeman W.J. Restoring to cognition the forgotten primacy of action, intention, and emotion. J. Consciousness Studies, 6(11-12):ix–xx, 1999.

    Google Scholar 

  84. Harter D. and Kozma R. Navigation and cognitive map formation using aperiodic neuro\– dynamics. Proc. of 8th Int. Conf. on Simulation of Adaptive Behavior (SAB’04), LA, CA., 8:450–455, 2004.

    Google Scholar 

  85. Kozma R. and Fukuda T. Intentional dynamic systems - fundamental concepts and applications (editorial). Int. J. Intell. Syst., 21(9):875–879, 2006.

    CrossRef  Google Scholar 

  86. Voicu H., Kozma R., Wong D., and Freeman W.J. Spatial navigation model based on chaotic attractor networks. Connect. Sci., 16(1):1–19, 2004.

    CrossRef  Google Scholar 

  87. Kozma R. and Myers M. Analysis of phase transitions in kiv with amygdale during simulated navigation control. IEEE Inf. Joint Conf. Neur. Netw. IJCNN05, Montreal, Canada, 2005.

    Google Scholar 

  88. Kozma R., R. Deming, and L. Perlovsky. Optimal estimation of parameters of transient mixture processes using dynamic logic approach. Conference on Knowledge-Intensive Multi-Agent Systems KIMAS’07, Boston, MA, 2007.

    Google Scholar 

  89. Gat E., Desai R., Ivlev R., Loch J., and Miller D.P. Behavior control for robotic exploration of planetary surfaces. IEEE Trans. Robotics and Autom., 10(4):490–503, 1994.

    CrossRef  Google Scholar 

  90. Huntsberger T.L. and Rose J. Bismarc- a biologically inspired system for map-based autonmous rover control. Neural Networks, 11(7-8):1497–1510, 1998.

    CrossRef  Google Scholar 

  91. Huntsberger T., Cheng Y., Baumgartner E. T., Robinson M., and Schenker P. S. Sensory fusion for planetary surface robotic navigation, rendezvous, and manipulation operations. Proc. Int. Conf. on Advanced Robotics, Lisbon, Portugal, pages 1417–1424, 2003.

    Google Scholar 

  92. Tunstel E. Ethology as an inspiration for adaptive behavior synthesis in autonomous planetary rovers. Autonomous Robots, 11:333–339, 2001.

    CrossRef  MATH  Google Scholar 

  93. Seraji H. and Howard A. Behavior-based robot navigation on challenging terrain: A fuzzy logic approach. IEEE Trans. Robotics and Autom., 18(3):308–321, 2002.

    CrossRef  Google Scholar 

  94. O’Keefe J and Recce M.L. Phase relationship between hippocampal place units and the eeg theta rhythm. Hippocampus, 3:317–330, 1993.

    CrossRef  Google Scholar 

  95. Blum K. I. and Abbott L. F. A model of spatial map formation in the hippocampus of the rat. Neural Computation, 8:85–93, 1996.

    CrossRef  Google Scholar 

  96. Touretzky D. S. and Redish A. D. Theory of rodent navigation based on interacting representations of space. Hippocampus, 6(3):247–270, 1996.

    CrossRef  Google Scholar 

  97. Bachelder I.A. and Waxman A.M. Mobile robot visual mapping and localization: A view based neurocomputational architecture that emulates hippocampal place learning. Neural Networks, 7:1083–1099, 1994.

    CrossRef  Google Scholar 

  98. Arleo A. and W. Gerstner. Spatial cognition and neuro-mimetic navigation: A model of hippocampal place cell activity. Biological Cybernetics, 83:287–299, 2000.

    CrossRef  Google Scholar 

  99. Hasselmo M.E., Hay J., Ilyn M., and Gorchetchnikov A. Neuromodulation, theta rhythm and rat spatial navigation. Neural Networks, 15:689–707, 2002.

    CrossRef  Google Scholar 

  100. Berthoz A. Trullier O. Wiener S. and Meyer J.-A. Biologically-based artificial navigation systems: Review and prospects. Progress in Neurobiology, 51:483–544, 1997.

    CrossRef  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kozma, R. (2007). Neurodynamics of Intentional Behavior Generation. In: Perlovsky, L.I., Kozma, R. (eds) Neurodynamics of Cognition and Consciousness. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73267-9_7

Download citation

Publish with us

Policies and ethics