Skip to main content

The Formation of Global Neurocognitive State

  • Chapter

Part of the Understanding Complex Systems book series (UCS)

Abstract

I propose in this chapter that the formation of global neurocognitive state in the cerebral cortex is central to the mammalian capacity for assessment of organismic state. I consider a putative mechanism for the formation of global neurocognitive state from interactions among interconnected cortical areas. In this model, each area makes a local assessment of its own current state, representing a partial assessment of organismic state, through the generation of packets of high-frequency oscillatory wave activity. The spatial amplitude modulation (AM) pattern of the wave packet is proposed to represent the expression of an area’s current state in relation to the other areas with which it is interacting. Through their interactions, sets of cortical areas mutually constrain the AM patterns of their wave packets. It is proposed that this process leads to the manifestation of wave packets having cognitively consistent patterns, and the formation of globally unified consensual neurocognitive states.

Keywords

  • Wave Packet
  • Cortical Area
  • Phase Synchronization
  • Organismic State
  • Oscillatory Activity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • D. J. Amit. The hebbian paradigm reintegrated: Local reverberations as internal representations. Behav Brain Sci, 18:617–657, 1995.

    Google Scholar 

  • N. C. Andreasen, P. Nopoulos, D. S. O’Leary, D. D. Miller, T. Wassink, and M. Flaum. Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biol Psychiatry, 46(7):908–20, 1999.

    CrossRef  Google Scholar 

  • H. Barbas. Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Res Bull, 52(5):319–30, 2000.

    CrossRef  Google Scholar 

  • J. M. Barrie, W. J. Freeman, and M. D. Lenhart. Spatiotemporal analysis of prepyriform, visual, auditory, and somesthetic surface eegs in trained rabbits. J Neurophysiol, 76(1):520–39, 1996.

    Google Scholar 

  • R. D. Beer. Dynamical approaches to cognitive science. Trends Cogn Sci, 4:91–99, 2000.

    CrossRef  Google Scholar 

  • C. A. Brenner, O. Sporns, P. H. Lysaker, and B. F. O’Donnell. Eeg synchronization to modulated auditory tones in schizophrenia, schizoaffective disorder, and schizotypal personality disorder. Am J Psychiatry., 160(12):2238–40., 2003.

    CrossRef  Google Scholar 

  • S. L. Bressler. Spatio-temporal analysis of olfactory signal processing with behavioral conditioning. PhD thesis, University of California, Berkeley, 1982.

    Google Scholar 

  • S. L. Bressler. Spatial organization of eegs from olfactory bulb and cortex. Electroencephalogr Clin Neurophysiol, 57(3):270–276, Mar 1984.

    CrossRef  Google Scholar 

  • S. L. Bressler. Large-scale cortical networks and cognition. Brain Res Brain Res Rev, 20(3):288–304, 1995.

    CrossRef  Google Scholar 

  • S. L. Bressler. Understanding cognition through large-scale cortical networks. Curr Dir Psychol Sci, 11:58–61, 2002.

    CrossRef  Google Scholar 

  • S. L. Bressler. Cortical coordination dynamics and the disorganization syndrome in schizophrenia. Neuropsychopharmacology, 28(Suppl 1):S35–9, 2003.

    CrossRef  Google Scholar 

  • S. L. Bressler. Inferential constraint sets in the organization of visual expectation. Neuroinformatics, 2(2):227–38, 2004.

    CrossRef  Google Scholar 

  • S. L. Bressler, R. Coppola, and R. Nakamura. Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature, 366(6451):153–6, 1993.

    CrossRef  Google Scholar 

  • S. L. Bressler and J. A. Kelso. Cortical coordination dynamics and cognition. Trends Cogn Sci, 5(1):26–36, 2001.

    CrossRef  Google Scholar 

  • S. L. Bressler and A. R. McIntosh. The role of neural context in large-scale neurocognitive network operations. In V. Jirsa and A. R. McIntosh, editors, Handbook of Brain Connectivity. Springer-Verlag, 2007.

    Google Scholar 

  • S. L. Bressler and E. Tognoli. Operational principles of neurocognitive networks. Int J Psychophysiol, 60(2):139–48. Epub 2006 Feb 21, 2006.

    CrossRef  Google Scholar 

  • A. Brovelli, M. Ding, A. Ledberg, Y. Chen, R. Nakamura, and S. L. Bressler. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by granger causality. Proc Natl Acad Sci U S A, 101(26):9849–54. Epub 2004 Jun 21, 2004.

    Google Scholar 

  • G. Buzsaki and A. Draguhn. Neuronal oscillations in cortical networks. Science, 304(5679):1926–9, 2004.

    CrossRef  Google Scholar 

  • A. R. Damasio, T. J. Grabowski, A. Bechara, H. Damasio, L. L. Ponto, J. Parvizi, and R. D. Hichwa. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci., 3(10):1049–56., 2000.

    CrossRef  Google Scholar 

  • J. DeFelipe, L. Alonso-Nanclares, and J. I. Arellano. Microstructure of the neocortex: comparative aspects. J Neurocytol., 31(3–5):299–316., 2002.

    CrossRef  Google Scholar 

  • J. DeFelipe, G. N. Elston, I. Fujita, J. Fuster, K. H. Harrison, P. R. Hof, Y. Kawaguchi, K. A. Martin, K. S. Rockland, A. M. Thomson, S. S. Wang, E. L. White, and R. Yuste. Neocortical circuits: evolutionary aspects and specificity versus non-specificity of synaptic connections. remarks, main conclusions and general comments and discussion. J Neurocytol., 31(3–5): 387–416., 2002.

    CrossRef  Google Scholar 

  • R. J. Douglas, C. Koch, M. Mahowald, K. A. Martin, and H. H. Suarez. Recurrent excitation in neocortical circuits. Science, 269(5226):981–5., 1995.

    CrossRef  Google Scholar 

  • J. Duncan, G. Humphreys, and R. Ward. Competitive brain activity in visual attention. Curr Opin Neurobiol., 7(2):255–61., 1997.

    CrossRef  Google Scholar 

  • D. J. Felleman and D. C. Van Essen. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex., 1(1):1–47., 1991.

    CrossRef  Google Scholar 

  • W. J. Freeman. Mass action in the nervous system. Academic Press. 2004: http://sulcus. berkeley.edu/MANSWWW/MANSWWW.html, 1975.

    Google Scholar 

  • W. J. Freeman. A neurobiological theory of meaning in perception. part ii: Spatial patterns of phase in gamma eegs from primary sensory cortices reveal the dynamics of mesoscopic wave packets. Int J Bifurcat Chaos, 13:2513–2535, 2003.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • W. J. Freeman. The wave packet: an action potential for the 21st century. J Integr Neurosci, 2(1):3–30, 2003.

    CrossRef  Google Scholar 

  • W. J. Freeman. Origin, structure, and role of background eeg activity. part 2. analytic phase. Clin Neurophysiol, 115(9):2089–107, 2004.

    CrossRef  Google Scholar 

  • W. J. Freeman. Origin, structure, and role of background eeg activity. part 4: Neural frame simulation. Clin Neurophysiol, 117(3):572–89. Epub 2006 Jan 25, 2006.

    Google Scholar 

  • W. J. Freeman and J. M. Barrie. Analysis of spatial patterns of phase in neocortical gamma eegs in rabbit. J Neurophysiol, 84(3):1266–1278, 2000.

    Google Scholar 

  • W. J. Freeman and B. C. Burke. A neurobiological theory of meaning in perception. part iv: Multicortical patterns of amplitude modulation in gamma eeg. Int J Bifurcat Chaos, 13: 2857–2866, 2003.

    CrossRef  MATH  Google Scholar 

  • W. J. Freeman, B. C. Burke, and M. D. Holmes. Aperiodic phase re-setting in scalp eeg of beta-gamma oscillations by state transitions at alpha-theta rates. Hum Brain Mapp, 19(4): 248–272, 2003.

    CrossRef  Google Scholar 

  • W. J. Freeman, M. D. Holmes, G. A. West, and S. Vanhatalo. Fine spatiotemporal structure of phase in human intracranial eeg. Clin Neurophysiol, 117(6):1228–1243, 2006.

    CrossRef  Google Scholar 

  • W. J. Freeman and L. J. Rogers. A neurobiological theory of meaning in perception. part v. multicortical patterns of phase modulation in gamma eeg. Int J Bifurc Chaos, 13:2867–2887, 2003.

    CrossRef  MATH  Google Scholar 

  • W. J. Freeman and B. W. van Dijk. Spatial patterns of visual cortical fast eeg during conditioned reflex in a rhesus monkey. Brain Res, 422(2):267–276, 1987.

    CrossRef  Google Scholar 

  • J. M. Fuster. Network memory. Trends Neurosci, 20(10):451–9, 1997.

    CrossRef  Google Scholar 

  • J. M. Fuster. Upper processing stages of the perception-action cycle. Trends Cogn Sci., 8(4):143–5., 2004.

    CrossRef  Google Scholar 

  • J. M. Fuster. The cognit: a network model of cortical representation. Int J Psychophysiol, 60:125–32, 2006.

    CrossRef  Google Scholar 

  • J. A. Gray. The contents of consciousness: a neuropsychological conjecture. Behav Brain Sci, 18:659–722, 1995.

    CrossRef  Google Scholar 

  • C. C. Hilgetag, M. A. O’Neill, and M. P. Young. Indeterminate organization of the visual system. Science., 271(5250):776–7., 1996.

    CrossRef  Google Scholar 

  • C. C. Hilgetag, M. A. O’Neill, and M. P. Young. Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philos Trans R Soc Lond B Biol Sci., 355(1393):71–89., 2000.

    CrossRef  Google Scholar 

  • R. E. Hoffman and T. H. McGlashan. Reduced corticocortical connectivity can induce speech perception pathology and hallucinated ‘voices’. Schizophr Res., 30(2):137–41., 1998.

    CrossRef  Google Scholar 

  • W. James. Are we automata? Mind, 4:1–22, 1879.

    CrossRef  Google Scholar 

  • E. R. John. From synchronous neuronal discharges to subjective awareness? Prog Brain Res., 150:143–71., 2005.

    CrossRef  Google Scholar 

  • J. A. S. Kelso. Dynamic patterns. MIT Press, 1995.

    Google Scholar 

  • J. F. Kihlstrom. The cognitive unconscious. Science., 237(4821):1445–52., 1987.

    CrossRef  Google Scholar 

  • T. Koenig, L. Prichep, T. Dierks, D. Hubl, L. O. Wahlund, E. R. John, and V. Jelic. Decreased eeg synchronization in alzheimer’s disease and mild cognitive impairment. Neurobiol Aging, 26:165–71, 2005.

    CrossRef  Google Scholar 

  • S. Kuhlmann and O. T. Wolf. Arousal and cortisol interact in modulating memory consolidation in healthy young men. Behav Neurosci., 120(1):217–23., 2006.

    CrossRef  Google Scholar 

  • S. Kuhlmann and O. T. Wolf. A non-arousing test situation abolishes the impairing effects of cortisol on delayed memory retrieval in healthy women. Neurosci Lett., 399(3):268–72. Epub 2006 Feb 28., 2006.

    CrossRef  Google Scholar 

  • J. S. Kwon, B. F. O’Donnell, G. V. Wallenstein, R. W. Greene, Y. Hirayasu, P. G. Nestor, M. E. Hasselmo, G. F. Potts, M. E. Shenton, and R. W. McCarley. Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry, 56(11):1001–5, 1999.

    CrossRef  Google Scholar 

  • L. Lee, L. M. Harrison, and A. Mechelli. The functional brain connectivity workshop: report and commentary. Network., 14(2):R1–15., 2003.

    CrossRef  Google Scholar 

  • M. D. Lewis. Bridging emotion theory and neurobiology through dynamic systems modeling. Behav Brain Sci., 28(2):169–94; discussion 194–245., 2005.

    CrossRef  Google Scholar 

  • M. Marinaro, S. Scarpetta, and M. Yoshioka. Learning of oscillatory correlated patterns in a cortical network by a stdp-based learning rule. Math Biosci, doi:10.1016/j.mbs.2006.10.001, 2007.

    Google Scholar 

  • J. B. Mattingley, J. Driver, N. Beschin, and I. H. Robertson. Attentional competition between modalities: extinction between touch and vision after right hemisphere damage. Neuropsychologia., 35(6):867–80., 1997.

    CrossRef  Google Scholar 

  • J. L. McClelland, D. E. Rumelhart, and G. E. Hinton. The appeal of parallel distributed processing. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1, pp. 3–44. MIT Press, 1986.

    Google Scholar 

  • M. M. Mesulam. From sensation to cognition. Brain., 121(Pt 6):1013–52., 1998.

    CrossRef  Google Scholar 

  • A. Meyer-Lindenberg, J. B. Poline, P. D. Kohn, J. L. Holt, M. F. Egan, D. R. Weinberger, and K. F. Berman. Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatry, 158(11):1809–17, 2001.

    CrossRef  Google Scholar 

  • F. W. Ohl, H. Scheich, and W. J. Freeman. Change in pattern of ongoing cortical activity with auditory category learning. Nature, 412(6848):733–736, 2001.

    CrossRef  Google Scholar 

  • J. Panksepp. At the interface of the affective, behavioral, and cognitive neurosciences: decoding the emotional feelings of the brain. Brain Cogn., 52(1):4–14., 2003.

    CrossRef  Google Scholar 

  • R. E. Passingham, K. E. Stephan, and R. Kotter. The anatomical basis of functional localization in the cortex. Nat Rev Neurosci., 3(8):606–16., 2002.

    Google Scholar 

  • W. A. Phillips and S. M. Silverstein. Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci., 26(1):65–82; discussion 82–137., 2003.

    CrossRef  Google Scholar 

  • R. Port and T. van Gelder. Mind as motion. MIT Press, 1995.

    Google Scholar 

  • F. Pulvermuller. Words in the brain’s language. Behav Brain Sci., 22(2):253–79; discussion 280–336., 1999.

    CrossRef  Google Scholar 

  • M. Reuter. Impact of cortisol on emotions under stress and nonstress conditions: a pharmacopsychological approach. Neuropsychobiology., 46(1):41–8., 2002.

    CrossRef  MathSciNet  Google Scholar 

  • P. R. Roelfsema, A. K. Engel, P. Konig, and W. Singer. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature., 385(6612):157–61., 1997.

    CrossRef  Google Scholar 

  • A. Schnitzler and J. Gross. Functional connectivity analysis in magnetoencephalography. Int Rev Neurobiol., 68:173–95., 2005.

    Google Scholar 

  • J. T. Serences and S. Yantis. Selective visual attention and perceptual coherence. Trends Cogn Sci, 10:38–45, 2006.

    CrossRef  Google Scholar 

  • A. K. Seth, E. Izhikevich, G. N. Reeke, and G. M. Edelman. Theories and measures of consciousness: an extended framework. Proc Natl Acad Sci U S A, 103:10799–804, 2006.

    CrossRef  Google Scholar 

  • K. M. Spencer, P. G. Nestor, M. A. Niznikiewicz, D. F. Salisbury, M. E. Shenton, and R. W. McCarley. Abnormal neural synchrony in schizophrenia. J Neurosci., 23(19):7407–11., 2003.

    Google Scholar 

  • M. Spivey. The continuity of mind. Oxford University Press, 2006.

    Google Scholar 

  • M. J. Spivey and R. Dale. Continuous dynamics in real-time cognition. Current Directions in Psychological Science, 15:207–211, 2006.

    CrossRef  Google Scholar 

  • O. Sporns, G. Tononi, and G. M. Edelman. Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex., 10(2): 127–41., 2000.

    CrossRef  Google Scholar 

  • O. Sporns, G. Tononi, and G. M. Edelman. Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res., 135(1–2):69–74., 2002.

    CrossRef  Google Scholar 

  • V. B. Strelets, V. Y. Novototsky-Vlasov, and J. V. Golikova. Cortical connectivityin high frequency beta-rhythm in schizophrenics with positive and negative symptoms. Int J Psychophysiol., 44(2):101–15., 2002.

    CrossRef  Google Scholar 

  • C. Tallon-Baudry, O. Bertrand, and C. Fischer. Oscillatory synchrony between humanextrastriate areas during visual short-term memory maintenance. J Neurosci., 21(20):RC177., 2001.

    Google Scholar 

  • P. Thagard and K. Verbeurgt. Coherence as constraint satisfaction. Cognit Sci, 22:1–24, 1998.

    CrossRef  Google Scholar 

  • E. Thompson and F. J. Varela. Radical embodiment: neural dynamics and consciousness. Trends Cogn Sci., 5(10):418–425., 2001.

    CrossRef  Google Scholar 

  • G. Tononi and G. M. Edelman. Schizophrenia and the mechanisms of conscious integration. Brain Res Brain Res Rev., 31(2–3):391–400., 2000.

    CrossRef  Google Scholar 

  • G. Tononi, O. Sporns, and G. M. Edelman. Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual system. Cereb Cortex, 2:310–335, 1992.

    CrossRef  Google Scholar 

  • P. J. Uhlhaas, D. E. Linden, W. Singer, C. Haenschel, M. Lindner, K. Maurer, and E. Rodriguez. Dysfunctional long-range coordination of neural activity during gestalt perception in schizophrenia. J Neurosci., 26(31):8168–75., 2006.

    CrossRef  Google Scholar 

  • O. van der Stelt, A. Belger, and J. A. Lieberman. Macroscopic fast neuronal oscillations and synchrony in schizophrenia. Proc Natl Acad Sci U S A., 101(51):17567–8. Epub 2004 Dec 15., 2004.

    CrossRef  Google Scholar 

  • F. Varela, J. P. Lachaux, E. Rodriguez, and J. Martinerie. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci., 2(4):229–39., 2001.

    CrossRef  Google Scholar 

  • J. Vezoli, A. Falchier, B. Jouve, K. Knoblauch, M. Young, and H. Kennedy. Quantitative analysis of connectivity in the visual cortex: extracting function from structure. Neuroscientist., 10(5):476–82., 2004.

    CrossRef  Google Scholar 

  • A. von Stein, P. Rappelsberger, J. Sarnthein, and H. Petsche. Synchronization between temporal and parietal cortex during multimodal object processing in man. Cereb Cortex., 9(2):137–50., 1999.

    CrossRef  Google Scholar 

  • L. M. Ward. Dynamical cognitive science. MIT Press, 2002.

    Google Scholar 

  • J. P. Welsh, E. S. Ahn, and D. G. Placantonakis. Is autism due to brain desynchronization? Int J Dev Neurosci., 23(2–3):253–63., 2005.

    CrossRef  Google Scholar 

  • M. P. Young. The organization of neural systems in the primate cerebral cortex. Proc Biol Sci., 252(1333):13–8., 1993.

    CrossRef  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bressler, S.L. (2007). The Formation of Global Neurocognitive State. In: Perlovsky, L.I., Kozma, R. (eds) Neurodynamics of Cognition and Consciousness. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73267-9_4

Download citation

Publish with us

Policies and ethics