Skip to main content

Proposed Cortical “Shutter” Mechanism in Cinematographic Perception

  • Chapter

Part of the Understanding Complex Systems book series (UCS)

Abstract

Brains are open thermodynamic systems, continually dissipating meta-bolic energy in forming cinematographic spatiotemporal patterns of neural activity. In this report patterns of cortical oscillations are described as ‘dissipative structures’ formed near an operating point at criticality far from equilibrium. Around that point exists a small-signal, near-linear range in which pairs of impulse responses superpose. Piece-wise linearization extends analysis into nonlinear ranges. Resulting root loci are interpreted as projections from a phase plane, in which the three phase boundaries are graphed in the coordinates of rate of change in a dynamic order parameter (negentropy) on the ordinate analogous to static pressure vs. rate of energy dissipation (power) analogous to static temperature on the abscissa. The graph displays the neural mechanism that implements phase transitions and enables the limbic system to repeat the action-perception cycle at 3–7 Hz. The mechanism is null spikes (‘vortices’) in Rayleigh noise in background electrocorticogram (ECoG) that serve as a shutter by triggering phase transitions.

Keywords

  • Impulse Response
  • Wave Packet
  • Olfactory Bulb
  • Feedback Gain
  • Ordinary Differential Equation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An Exploration of Mesoscopic Brain Dynamics. London: Springer, 2001.

    Google Scholar 

  2. D. J. Amit. The hebbian paradigm reintegrated: Local reverberations as internal representations. Behavioral and Brain Science, 18:617–657, 1995.

    Google Scholar 

  3. H. Atmanspacher and H. Scheingraber. Pragmatic information and dynamical instabilities in a multimode continuous-wave dye laser. Canadian Journal of Physics, 68:728–737, 1990.

    Google Scholar 

  4. P. Bak, C. Tang C, and K. Wiesenfeld. Self-organized criticality: an explanation of 1/f noise. Physical Review Letters, 59:364–374,1987.

    CrossRef  Google Scholar 

  5. J. M. Barrie, W. J. Freeman, and M. Lenhart. Modulation by discriminative training of spatial patterns of gamma eeg amplitude and phase in neocortex of rabbits. Journal of Neurophysiology, 76:520–539, 1996.

    Google Scholar 

  6. E. Basar. Eeg - brain dynamics. Amsterdam: Elsevier, 1980.

    Google Scholar 

  7. E. Basar. Brain function and oscillations. Berlin: Springer-Verlag, 1998.

    Google Scholar 

  8. D. N. Blauch. Chemistry experiments & exercises: Phase changes. 2006.

    Google Scholar 

  9. B. Bollobás. Random graphs, cambridge studies in advanced mathematics 2nd ed. Cambridge UK: Cambridge University Press, 1985/2001.

    Google Scholar 

  10. B. Bollobás and O. Riordan. Results on scale-free random graphs. Weinhiem: Wiley-VCH, 2003.

    Google Scholar 

  11. S. L. Bressler and J. A. S. Kelso. Cortical coordination dynamics and cognition. Trends in Cognitive Science, 5:26–36, 2001.

    CrossRef  Google Scholar 

  12. C. L. Chapman, P. D. Bourke, and J. J. Wright. Spatial eigenmodes and synchronous oscillation: coincidence detection in simulated cerebral cortex. Journal of Mathematical Biology, 45:57–78,, 2005.

    CrossRef  MathSciNet  Google Scholar 

  13. J. D. Emery and W. J. Freeman. Pattern analysis of cortical evoked potential parameters during attention changes. Physiololgy and Behavior, 4:67–77, 1969.

    Google Scholar 

  14. W. J. Freeman. Mass action in the nervous system. New York: Academic Press, 1975.

    Google Scholar 

  15. W. J. Freeman. Nonlinear gain mediating cortical stimulus-response relations. Biological Cybernetics, 33:237–247, 1979.

    CrossRef  Google Scholar 

  16. W. J. Freeman. Petit mal seizure spikes in olfactory bulb∈dex and cortex caused by runaway inhibition after exhaustion of excitation. Brain Research Reviews, 11:259–284, 1986.

    CrossRef  Google Scholar 

  17. W. J. Freeman. Societies of Brains. A Study in the Neuroscience of Love and Hate. Mahwah NJ: Lawrence Erlbaum Assoc., 1995.

    Google Scholar 

  18. W. J. Freeman. Origin, structure, and role of background eeg activity. part 3. neural frame classification. Clinical. Neurophysiology, 116(5):1118–1129, 2005.

    CrossRef  MathSciNet  Google Scholar 

  19. W. J. Freeman. Definitions of state variables and state space for brain-computer interface. part 1. multiple hierarchical levels of brain function. Cognitive Neurodynamics, 1(1): 3–14, 2006.

    Google Scholar 

  20. W. J. Freeman. Origin, structure, and role of background eeg activity. part 1. phase. Clinical. Neurophysiology, 115:2077–2088, 2006.

    CrossRef  Google Scholar 

  21. W. J. Freeman. Origin, structure, and role of background eeg activity. part 2. amplitude. Clinical. Neurophysiology, 115:2089–2107, 2006.

    CrossRef  Google Scholar 

  22. W. J. Freeman. Origin, structure, and role of background eeg activity. part 4. neural frame simulation. Clinical. Neurophysiology, 117(3):572–589, 2006.

    CrossRef  MathSciNet  Google Scholar 

  23. W. J. Freeman. Cortical aperiodic ‘clock’ enabling phase transitions at theta rates. Proceedings, International Joint Conference on Neural Networks (IJCNN), 2007.

    Google Scholar 

  24. W. J. Freeman and B. Baird. Relation of olfactory eeg to behavior: Spatial analysis. Behavioral Neuroscience, 101:393–408, 1987.

    CrossRef  Google Scholar 

  25. W. J. Freeman and B. C. Burke. A neurobiological theory of meaning in perception. part 4. multicortical patterns of amplitude modulation in gamma egg. International Journal of Bifurcation and Chaos, 13:2857–2866, 2003.

    CrossRef  MATH  Google Scholar 

  26. W. J. Freeman, B. C. Burke, and M. D. Holmes. Aperiodic phase re-setting in scalp eeg of beta-gamma oscillations by state transitions at alpha-theta rates. Human Brain Mapping, 19(4):248–272, 2003.

    Google Scholar 

  27. W. J. Freeman, B. C. Burke, M. D. Holmes, and S. Vanhatalo. Spatial spectra of scalp eeg and emg from awake humans. Clinical. Neurophysiology, 114:1055–1060, 2003.

    CrossRef  Google Scholar 

  28. W. J. Freeman, G. Gaál, and R. Jornten. A neurobiological theory of meaning inperception. part 3. multiple cortical areas synchronize without loss of local autonomy. International Journal of Bifurcation and Chaos, 13:2845–2856, 2003.

    CrossRef  MATH  Google Scholar 

  29. W. J. Freeman and K. Grajski. Relation of olfactory eeg to behavior: Factor analysis. Behavioral Neuroscience, 100:753–763, 1987.

    CrossRef  Google Scholar 

  30. W. J. Freeman, M. D. Holmes, G. A. West GA, and S. Vanhatalo. Fine spatiotemporal structure of phase in human intracranial egg. Clinical Neurophysiology, 117: 1228–1243, 2006.

    CrossRef  Google Scholar 

  31. W. J. Freeman and L. J. Rogers. A neurobiological theory of meaning in perception. part 5. multicortical patterns of phase modulation in gamma eeg. International Journal of Bifurcation and Chaos, 13:2867–2887, 2003.

    CrossRef  MATH  Google Scholar 

  32. W. J. Freeman and W. Schneider. Changes in spatial patterns of rabbit olfactory eeg with conditioning to odors. Psychophysiology, 19:44–56, 1982.

    CrossRef  Google Scholar 

  33. W. J. Freeman and G. Vitiello. Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Physics of Life Reviews, 3:93–118, 2006.

    CrossRef  Google Scholar 

  34. E. Gordon. Integrative neuroscience. Sydney: Harwood Academic, 2000.

    Google Scholar 

  35. H. Haken. What can synergetics contribute to the understanding of brain functioning? C. Uhl (Ed.) Berlin: Springer-Verlag, 1999.

    Google Scholar 

  36. R. C. Hwa and T. Ferree. Scaling properties of fluctuations in the human electroencephalogram. Physics Review, 66, 2002.

    Google Scholar 

  37. L. Ingber. Statistical mechanics of multiple scales of neocortical interactions. Nunez PL (ed.) Neocortical Dynamics and Human EEG Rhythms, New York: Oxford University Press, pp. 628–681, 1995.

    Google Scholar 

  38. H. J. Jensen. Self-organized criticality: Emergent complex behavior in physical and biological systems. New York: Cambridge University Press, 1998.

    MATH  Google Scholar 

  39. L. M. Kay and W. J. Freeman. Bidirectional processing in the olfactory-limbic axis during olfactory behavior. Behavioral Neuroscience, 112:541–553, 1998.

    CrossRef  Google Scholar 

  40. J. A. S. Kelso. Dynamic patterns: The self-organization of brain and behavior. Cambridge: MIT Press, 1995.

    Google Scholar 

  41. R. Kozma and W. J. Freeman. Chaotic resonance: Methods and applications for robust classification of noisy and variable patterns. International Journal of Bifurcation and Chaos, 10:2307–2322, 2001.

    Google Scholar 

  42. R. Kozma, M. Puljic, P. Balister, B. Bollobás, and W. J. Freeman. Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biological Cybernetics, 92:367–379, 2005.

    CrossRef  MATH  MathSciNet  Google Scholar 

  43. K. S. Lashley. Brain Mechanisms and Intelligence. Chicago IL: University of Chicago Press, 1929.

    Google Scholar 

  44. D. T. J. Liley, M. P. Dafilis, and P. J. Cadusch. A spatially continuous mean field of electrocortical activity. Network: Computational Neural Systems, 13:67–113, 2002.

    CrossRef  MATH  Google Scholar 

  45. K. Linkenkaer-Hansen, V. M. Nikouline, J. M. Palva, and R. J. Iimoniemi. Long-range temporal correlations and scaling behavior in human brain oscillations. Journal of Neuroscience, 15:1370–1377, 2001.

    Google Scholar 

  46. M. S. Matell and W. H. Meck. Neuropsychological mechanisms of interval timing behavior. BioEssays, 22(1):94–103, 2000.

    CrossRef  Google Scholar 

  47. M. Merleau-Ponty. Phenomenology of perception. New York: Humanities Press, 1945/1962.

    Google Scholar 

  48. F. W. Ohl, H. Scheich, and W. J. Freeman. Change in pattern of ongoing cortical activity with auditory category learning. Nature, 412:733–736, 2001.

    CrossRef  Google Scholar 

  49. J. Orbach. The neuropsychological theories of lashley and hebb. Psycoloquy, 10(29), 1999.

    Google Scholar 

  50. J. Panksepp. Affective neuroscience: The foundations of human and animal emotions. Oxford UK: Oxford University Press, 1998.

    Google Scholar 

  51. E. Pereda, A. Gamundi, R. Rial, and J. Gonzalez. Non-linear behavior of human eeg – fractal exponent versus correlation dimension in awake and sleep stages. Neuroscence Letters, 250:91–94, 1998.

    CrossRef  Google Scholar 

  52. I. Prigogine. From being to becoming: Time and complexity in the physical sciences. San Francisco. W. H. Freeman, 1980.

    Google Scholar 

  53. G. Viana Di Prisco and W. J. Freeman. Odor-related bulbar eeg spatial pattern analysis during appetitive conditioning in rabbits. Behavioral Neuroscience, (99):962–978, 1985.

    CrossRef  Google Scholar 

  54. O. Sacks. In the river of consciousness. New York Book Revue, 51(1), 2004.

    Google Scholar 

  55. M. Schroeder. Fractals, chaos, power laws. San Francisco: W. H. Freeman, 1991.

    MATH  Google Scholar 

  56. L. Siklós, M. Rickmann, F. Joó, W. J. Freeman, and J. R. Wolff JR. Chloride is preferentially accumulated in a subpopulation of dendrites and periglomerular cells of the main olfactory bulb in adult rats. Neuroscience, 64:165–172, 1995.

    CrossRef  Google Scholar 

  57. C. A. Skarda and W. J. Freeman. How brains make chaos in order to make sense of the world. Behavioral and Brain Science, 10:161–195, 1987.

    Google Scholar 

  58. L. W. Stark, C. M. Privitera, H. Yang, M. Azzariti, Y. F. Ho, T. Blackmon, and D. Chernyak. Representation of human vision in the brain: How does human perception recognize images? Journal of Electronic Imaging, 10(1):123–151, 2001.

    CrossRef  Google Scholar 

  59. I. Tsuda. Towards an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behavioral and Brain Sciences, 24:793–810, 2001.

    CrossRef  Google Scholar 

  60. G. Vitiello. My double unveiled. Amsterdam: John Benjamins, 2001.

    Google Scholar 

  61. W. G. Walter. The Living Brain. New York: W. W. Norton, 1953.

    Google Scholar 

  62. X. F. Wang and G. R. Chen. Complex networks: small-world, scale-free and beyond. EEE Circuits and Systems, 31:6–20, 2003.

    CrossRef  Google Scholar 

  63. J. J. Wright, C. J. Rennie, G. J. Lees, P. A. Robinson, P. D. Bourke, C. L. Chapman, E. Gordon, and D. L. Rowe. Simulated electrocortical activity at microscopic,mesoscopic and global scales. Journal of Neuropsychopharmacology, 28:S80–S93, 2003.

    CrossRef  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freeman, W.J. (2007). Proposed Cortical “Shutter” Mechanism in Cinematographic Perception. In: Perlovsky, L.I., Kozma, R. (eds) Neurodynamics of Cognition and Consciousness. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73267-9_2

Download citation

Publish with us

Policies and ethics