Advertisement

Intuitionistic Refinement Calculus

  • Sylvain Boulmé
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4583)

Abstract

Refinement calculi are program logics which formalize the “top-down” methodology of software development promoted by Dijkstra and Wirth in the early days of structured programming. I present here the shallow embedding of a refinement calculus into Open image in new window constructive type theory. This embedding involves monad transformers and the computational reflexion of weakest-preconditions, using a continuation passing style. It should allow to reason about many Open image in new window programs combining non-functional features (state, exceptions, etc) with purely functional ones (higher-order functions, structural recursion, etc).

Keywords

Binary Tree Composition Operator Proof Obligation Total Correctness Structural Recursion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [[{Abr}96]]
    Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  2. [[Aud99]]
    Audebaud, P., Zucca, E.: Deriving Proof Rules from Continuation Semantics. Formal Aspects of Computing 11(4), 426–447 (1999)zbMATHCrossRefGoogle Scholar
  3. [[Bac78]]
    Back, R.-J.: On the correctness of refinement steps in program development. Ph.D. thesis, University of Helsinki (1978)Google Scholar
  4. [[{Bac}98]]
    Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  5. [[Beh99]]
    Behm, P., Benoit, P., et al.: Météor: A Successful Application of B in a Large Project. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999)Google Scholar
  6. [[Ben02]]
    Benton, N., Hughes, J., et al.: Monads and Effects. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. [[Bod99]]
    Bodeveix, J.-P., Filali, M., et al.: A Formalization of the B-Method in Coq and PVS. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, Springer, Heidelberg (1999)Google Scholar
  8. [[{Bou}06]]
    Boulmé, S.: Higher-Order Refinement In Coq (reports and Coq files). (2006), Web page: http://www-lsr.imag.fr/users/Sylvain.Boulme/horefinement/
  9. [[{Bou}07]]
    Boulmé, S.: Higher-Order imperative enumeration of binary trees in Coq. (2007) Online paper: http://www-lsr.imag.fr/Sylvain.Boulme/horefinement/enumBTdesc.pdf
  10. [[Bun97]]
    Bunkenburg, A.: Expression Refinement. Ph.D. thesis, Computing Science Department, University of Glasgow (1997)Google Scholar
  11. [[Coq88]]
    Coquand, T., Huet, G.: The Calculus of Constructions. Information and Computation 76, 95–120 (1988)CrossRefGoogle Scholar
  12. [[{Coq}04]]
    Coq Development Team. The Coq Proof Assistant Reference Manual, version 8.0. Logical Project, INRIA-Rocquencourt (2004)Google Scholar
  13. [[Dij75]]
    Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM 18(8), 453–457 (1975)zbMATHCrossRefGoogle Scholar
  14. [[{Fil}03]]
    Filliâtre, J.-C.: Verification of Non-Functional Programs using Interpretations in Type Theory. Journal of Functional Programming 13(4), 709–745 (2003)zbMATHCrossRefGoogle Scholar
  15. [[{Gor}88]]
    Gordon, M.J.C.: Mechanizing Programming Logics in Higher-Order Logic. In: Current Trends in Hardware Verification and Automatic Theorem Proving, Springer, Heidelberg (1988)Google Scholar
  16. [[Hon05]]
    Honda, K., Berger, M., et al.: An Observationally Complete Program Logic for Imperative Higher-Order Functions. In: IEEE Symp. on LICS’05 (2005)Google Scholar
  17. [[Lia96]]
    Liang, S., Hudak, P.: Modular Denotational Semantics for Compiler Construction. In: Nielson, H.R. (ed.) ESOP 1996. LNCS, vol. 1058, pp. 219–234. Springer, Heidelberg (1996)Google Scholar
  18. [[Mog91]]
    Moggi, E.: Notions of computation and monads. Information and Computation 93(1), 55–92 (1991)zbMATHCrossRefGoogle Scholar
  19. [[Mor87]]
    Morris, J.M.: A theoretical basis for stepwise refinement and the programming calculus. Science of Computer Programming 9(3), 287–306 (1987)zbMATHCrossRefGoogle Scholar
  20. [[Mor90]]
    Morgan, C.: Programming from Specifications. Prentice-Hall, Englewood Cliffs (1990)zbMATHGoogle Scholar
  21. [[Nan06]]
    Nanevski, A., Morrisett, G., et al.: Polymorphism and separation in Hoare Type Theory. In: Nanevski, A., Morrisett, G. (eds.) Proc. of ICFP’06, ACM Press, New York (2006)Google Scholar
  22. [[{Pey}93]]
    Jones, S.L.P., Wadler, P.: Imperative functional programming. In: Proc. of the 20th symposium on POPL, ACM Press, New York (1993)Google Scholar
  23. [[PM93]]
    Paulin-Mohring, C.: Inductive Definitions in the System Coq - Rules and Properties. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, Springer, Heidelberg (1993)CrossRefGoogle Scholar
  24. [[Sch03]]
    Schröder, L., Mossakowski, T.: Monad-independent Hoare logic in HasCasl. In: Pezzé, M. (ed.) ETAPS 2003 and FASE 2003. LNCS, vol. 2621, Springer, Heidelberg (2003)Google Scholar
  25. [[vW94]]
    von Wright, J.: Program refinement by theorem prover. In: 6th Refinement Workshop, Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Sylvain Boulmé
    • 1
  1. 1.Laboratoire d’Informatique de Grenoble, 681, rue de la Passerelle BP-72 – 38402 St-Martin D’HéresFrance

Personalised recommendations