An Isomorphism Between Cut-Elimination Procedure and Proof Reduction

  • Koji Nakazawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4583)


This paper introduces a cut-elimination procedure of the intuitionistic sequent calculus and shows that it is isomorphic to the proof reduction of the intuitionistic natural deduction with general elimination and explicit substitution. It also proves strong normalization and Church-Rosser property of the cut-elimination procedure by projecting the sequent calculus to the natural deduction with general elimination without explicit substitution.


Classical Logic Reduction Rule Natural Deduction Sequent Calculus General Elimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. Journal of Functional Programming 1, 375–416 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  2. Bloo, R., Rose, K.H.: Preservation of strong normalization in named lambda calculi with explicit substitution and garbage collection. In: CSN’95. Computer Science in the Netherlands, pp. 62–72 (1995)Google Scholar
  3. Danos, V., Joinet, J.-B., Schellinx, H.: A new deconstructive logic: linear logic. The Journal of Symbolic Logic 62(2), 755–807 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  4. Espírito Santo, J.: Revisiting the correspondence between cut elimination and normalisation. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 600–611. Springer, Heidelberg (2000)Google Scholar
  5. Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) the collected papers of Gerhard Gentzen, pp. 68–131. North-Holland, Amsterdam (1969)Google Scholar
  6. Herbelin, H.: A λ-calculus structure isomorphic to Gentzen-style sequent calculus. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  7. Ikeda, S., Nakazawa, K.: Strong normalization proofs by CPS-translations. Information Processing Letters 99, 163–170 (2006)CrossRefMathSciNetGoogle Scholar
  8. Joachimski, F., Matthes, R.: Short proofs of normalization for the simply-typed λ-calculus, permutative conversions and Gödels’s T. Archive for Mathematical Logic 42, 59–87 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. Kikuchi, K.: A direct proof of strong normalization for an extended Herbelin’s calculus. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 244–259. Springer, Heidelberg (2004)Google Scholar
  10. Kikuchi, K.: On a local-step cut-elimination procedure for the intuitionistic sequent calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 120–134. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. Prawitz, D.: Natural deduction, a proof-theoretical study. Almqvist & Wiksell (1965)Google Scholar
  12. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Elsevier, Amsterdam (2006)Google Scholar
  13. Urban, C.: Classical Logic and Computation. PhD thesis, University of Cambridge (2000)Google Scholar
  14. Urban, C., Bierman, G.M.: Strong normalisation of cut-elimination in classical logic. Fundamenta Informaticae 45, 123–155 (2001)zbMATHMathSciNetGoogle Scholar
  15. von Plato, J.: Natural deduction with general elimination rules. Archive for Mathematical Logic 40, 541–567 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  16. Zucker, J.: The correspondence between cut-elimination and normalization. Annals of Mathematical Logic 7, 1–112 (1974)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Koji Nakazawa
    • 1
  1. 1.Graduate School of Informatics, Kyoto University 

Personalised recommendations