From Proof-Nets to Linear Logic Type Systems for Polynomial Time Computing

  • Patrick Baillot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4583)


In this presentation we give an overview of Dual Light Affine Logic (DLAL), a polymorphic type system for lambda calculus ensuring that typable lambda terms are executable in polynomial time. We stress the importance of proof-nets from Light linear logic for the design of this type system and for a result establishing that typable lambda-terms can be evaluated efficiently with optimal reduction. We also discuss the issue of DLAL type inference, which can be performed in polynomial time for system F terms. These results have been obtained in collaborations with Terui [1], Atassi and Terui [2], and Coppola and Dal Lago [3] .


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baillot, P., Terui, K.: Light types for polynomial time computation in lambda-calculus. In: Proceedings of LICS’04, pp. 266–275. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  2. 2.
    Atassi, V., Baillot, P., Terui, K.: Verification of Ptime reducibility for system F terms via Dual Light Affine Logic. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 150–166. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Baillot, P., Coppola, P., Dal Lago, U.: Light logics and optimal reduction: Completeness and complexity. In: Proceedings of LICS’07, IEEE Computer Society Press, Los Alamitos (to appear, 2007)Google Scholar
  4. 4.
    Leivant, D.: Predicative recurrence and computational complexity I: word recurrence and poly-time. In: Feasible Mathematics II, Birkhauser, pp. 320–343 (1994)Google Scholar
  5. 5.
    Bellantoni, S., Cook, S.: New recursion-theoretic characterization of the polytime functions. Computational Complexity 2, 97–110 (1992)zbMATHCrossRefGoogle Scholar
  6. 6.
    Jones, N.: LOGSPACE and PTIME characterized by programming languages. Theoretical Computer Science 228(1-2), 151–174 (1999)zbMATHCrossRefGoogle Scholar
  7. 7.
    Leivant, D., Marion, J.Y.: Lambda-calculus characterisations of polytime. Fundamenta Informaticae 19, 167–184 (1993)zbMATHGoogle Scholar
  8. 8.
    Girard, J.Y., Scedrov, A., Scott, P.: Bounded linear logic: A modular approach to polynomial time computability. Theoretical Computer Science 97, 1–66 (1992)zbMATHCrossRefGoogle Scholar
  9. 9.
    Lafont, Y.: Soft linear logic and polynomial time. Theoretical Computer Science 318(1-2), 163–180 (2004)zbMATHCrossRefGoogle Scholar
  10. 10.
    Girard, J.Y.: Light linear logic. Information and Computation 143, 175–204 (1998)zbMATHCrossRefGoogle Scholar
  11. 11.
    Asperti, A., Roversi, L.: Intuitionistic light affine logic. ACM Transactions on Computational Logic 3(1), 1–39 (2002)CrossRefGoogle Scholar
  12. 12.
    Terui, K.: Light affine lambda calculus and polynomial time strong normalization. Archive for Mathematical Logic 46(3-4), 253–280 (2007)zbMATHCrossRefGoogle Scholar
  13. 13.
    Hofmann, M.: Linear types and non-size-increasing polynomial time computation. Information and Computation 183(1), 57–85 (2003)zbMATHCrossRefGoogle Scholar
  14. 14.
    Mazza, D.: Linear logic and polynomial time. Mathematical Structures in Computer Science 16(6), 947–988 (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Lamping, J.: An algorithm for optimal lambda calculus reduction. In: Proceedings of POPL’90, pp. 16–30. ACM Press, New York (1990)Google Scholar
  16. 16.
    Gonthier, G., Abadi, M., Lévy, J.J.: The geometry of optimal lambda reduction. In: Proceedings of POPL’92, pp. 15–26. ACM Press, New York (1992)Google Scholar
  17. 17.
    Asperti, A.: Light affine logic. In: Proceedings of LICS’98, IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  18. 18.
    Dal Lago, U.: Context semantics, linear logic and computational complexity. In: Proceedings of LICS’06, pp. 169–178. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  19. 19.
    Coppola, P., Martini, S.: Optimizing optimal reduction: A type inference algorithm for elementary affine logic. ACM Trans. Comput. Log 7(2), 219–260 (2006)CrossRefGoogle Scholar
  20. 20.
    Coppola, P., Rocca, S R.D.: Principal typing for lambda calculus in elementary affine logic. Fundam. Inform. 65(1-2), 87–112 (2005)zbMATHGoogle Scholar
  21. 21.
    Coppola, P., Dal Lago, U., della Rocca, S R.: Elementary affine logic and the call-by-value lambda calculus. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 131–145. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Patrick Baillot
    • 1
  1. 1.LIPN, CNRS & Université Paris 13, 99 av. J-B. Clément, 93430 VilletaneuseFrance

Personalised recommendations