The Inhabitation Problem for Rank Two Intersection Types

  • Dariusz Kuśmierek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4583)


We prove that the inhabitation problem for rank two intersection types is decidable, but (contrary to a common belief) EXPTIME-hard. The exponential time hardness is shown by reduction from the in-place acceptance problem for alternating Turing machines.


lambda calculus intersection types type inhabitation problem alternating Turing machine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alessi, F., Barbanera, F., Dezani-Ciancanglini, M.: Intersection types and lambda models. Theoretical Computer Science 355(2), 108–126 (2006)zbMATHCrossRefGoogle Scholar
  2. 2.
    Kurata, T., Takahashi, M.: Decidable properties of intersection type systems. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 297–311. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  3. 3.
    Leivant, D.: Polymorphic type inference. In: Proceedings of the 10th ACM Symposium on Principles of Programing Languages, Austin, Texas, pp. 88–98. ACM Press, New York (1983)Google Scholar
  4. 4.
    Lopez-Escobar, E.G.K.: Proof-Functional Connectives. In: Proof-Functional Connectives. LNCS, vol. 1130, pp. 208–221. Springer, Heidelberg (1985)Google Scholar
  5. 5.
    Mints, G.: The Completeness of Provable Realizability. Notre Dame Journal of Formal Logic 30, 420–441 (1989)zbMATHCrossRefGoogle Scholar
  6. 6.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Publishing Company, Reading, MA (1995)Google Scholar
  7. 7.
    Statman, R.: Intuitionistic propositional logic is polynomial-space complete. TCS 9, 67–72 (1979)zbMATHCrossRefGoogle Scholar
  8. 8.
    Urzyczyn, P.: The emptiness problem for intersection types. Journal of Symbolic Logic 64(3), 1195–1215 (1999)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Dariusz Kuśmierek
    • 1
  1. 1.Warsaw University, Institute of Informatics, Banacha 2, 02-097 WarsawPoland

Personalised recommendations