Advertisement

Robust Tracking for Oscillatory Chemical Reactors

  • J. P. García-Sandoval
  • B. Castillo-Toledo
  • V. González-Álvarez
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 361)

Abstract

In this chapter the control problem of output tracking with disturbance rejection of chemical reactors operating under forced oscillations subjected to load disturbances and parameter uncertainty is addressed. An error feedback nonlinear control law which relies on the existence of an internal model of the exosystem that generates all the possible steady state inputs for all the admissible values of the system parameters is proposed, to guarantee that the output tracking error is maintained within predefined bounds and ensures at the same time the stability of the closed-loop system. Key theoretical concepts and results are first reviewed with particular emphasis on the development of continuous and discrete control structures for the proposed robust regulator. The role of disturbances and model uncertainty is also discussed. Several numerical examples are presented to illustrate the results.

Keywords

Polymerization Reactor Internal Model Continuous Stir Tank Reactor Periodic Operation Pressure Swing Adsorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Alvarez, R. Suarez, and A. Sanchez. Nonlinear decoupling control of free radical polymerization continuous stirred tank reactors. Ghem. Eng. Sci., 45:3341–3354, 1990.CrossRefGoogle Scholar
  2. [2]
    J.E. Bailey. Periodic operation of chemical reactors: A review. Ghem. Eng. Commun., 1:111–124, 1973.CrossRefGoogle Scholar
  3. [3]
    S. Bittanti, P. Coaneri, and G.D. Nicolao. The difference periodic Riccati equation for the periodic prediction problem. IEEE Trans. Automat. Contr., 33:706–712, 1988.zbMATHCrossRefGoogle Scholar
  4. [4]
    S. Bittanti and G. Guardabassi. Optimal cyclastationary control: The LQG approach. In IEEE Conf. Decision and Control (CDC), pages 166–167, Piscataway, NJ, 1981.Google Scholar
  5. [5]
    D.D. Bruns and J.E. Bailey. Process operation near an unstable steady state using nonlinear feedback control. Chem. Eng. Sci., 30:755–762, 1975.CrossRefGoogle Scholar
  6. [6]
    D.D. Bruns and J.E. Bailey. Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chem. Eng. Sci., 32:257–264, 1977.CrossRefGoogle Scholar
  7. [7]
    D. Butler, E. Friedler, and K. Gatt. Characterizing the quantity and quality of domestic wastewater inflows. Wat. Sci. Technol. 31:13–24, 1995.CrossRefGoogle Scholar
  8. [8]
    C.I. Byrnes and A. Isidori. Output regulation for nonlinear systems: An overview. Int. J. Robust Nonlinear Control, 10:323–337, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    B. Castillo-Toledo and S. Di Gennaro. On the nonlinear ripple free sampleddata robust regulator. Eur. J. Control, 8:44–55, 2002.CrossRefGoogle Scholar
  10. [10]
    B. Castillo-Toledo and G. Obregon-Pulido. Guaranteeing asymptotic zero intersampling tracking error via a discretized regulator and exponential holder for nonlinear systems. J. A pp. Reserch and Tech., 1:203–214, 2003.Google Scholar
  11. [11]
    M. Chang and S. Schmitz. Feedback control of unstable state in a laboratory reactor. Chem. Eng. Sci., 30:837–846, 1975.CrossRefGoogle Scholar
  12. [12]
    C.C. Chen, C. Hwang, and R.Y.K. Yang. Performance enhancement and optimization of chemostat cascades. Chem. Eng. Sci., 50:485–494, 1995.CrossRefGoogle Scholar
  13. [13]
    A. Cinar, K. Rigoponlos, S.M. Meerkov, and X. Shu. Vibrational Control of an exothermic CSTR. In American Control Conference (ACC), pages 593–598, Seattle, WA, 1986.Google Scholar
  14. [14]
    A. Cinar, K. Rigoponlos, S.M. Meerkov, and X. Shu. Nonlinear Vibrational Control of an exothermic CSTR. In American Control Conference (ACC), pages 1017–1022, Mineapolis, MN, 1987.Google Scholar
  15. [15]
    R.E. Claybugh, J.R. Griffin, and A.T. Watson. Process for broadening the MWD in polymers. U.S. Patent, 3:472–829, 1969.Google Scholar
  16. [16]
    R. Femat. Chaos in a class of reacting systems induced by robust asymptotic feedback. Physica D, 136:193–204, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    B.A. Francis. The linear multivariable regulator problem. SIAM J. Control Optim., 15(3):486–505, 1977.CrossRefMathSciNetGoogle Scholar
  18. [18]
    N. Friis and A.E. Hamielec. Gel effect in free radical polymerization. In Am. Chem. Soc. Symp. Ser., volume 24, page 883, 1976.Google Scholar
  19. [19]
    J.P. García-Sandoval. Nonlinear robust control for a class of polymerization reactors. Master’s thesis, Universidad de Guadalajara, Mexico, 2003.Google Scholar
  20. [20]
    O.M. Grasselli and S. Longhi. Robust tracking and regulation of linear periodic discrete-time systems. Int. J. Control, 54:613–633, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    J. Hamer, T. Akramov, and W. Ray. The dynamic behavior of continuous polymerization reactors II, nonisothermal solution homopolymerization and copolymerization in a CSTR. Chem. Eng. Sci., 36:1897–1914, 1981.CrossRefGoogle Scholar
  22. [22]
    O.E. Hansen and S.B. Jorgensen. Control of forced cyclic processes. In IFAC DYCORD, volume 95, pages 21–26, 1995.Google Scholar
  23. [23]
    S. Hara, Y. Yamamoto, T. Omata, and N. Nakano. Repetitive control system. IEEE Trans. Automat. Contr., 33:659–668, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    A. Isidori. Nonlinear Control Systems. Springer Verlag, third edition, 1995.Google Scholar
  25. [25]
    A. Isidori and C.I. Byrnes. Output regulation of nonlinear systems. IEEE Trans. Automat. Contr., 35:131–140, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    R.L. Laurence and G. Vasudevan. Belief function combination and conflict management. I&EC Process Design and Development, 7(3):427–433, 1968.CrossRefGoogle Scholar
  27. [27]
    J.G. Lazar and J. Ross. Experiments on the effects of external periodic variations on constrains on the thermodynamics of an oscillatory reactors. J. Phys. Chem., 92:3579–3589, 1990.CrossRefGoogle Scholar
  28. [28]
    J.H. Lee, S. Natarajan, and K.S. Lee. A model-based predictive control approach to repetitive control of continuous processes with periodic operations. Int. J. Control, 11:195–207, 2001.Google Scholar
  29. [29]
    Yu. Sh. Matros. Unsteady Processes in Catalytic Reactors. Elsevier, 1985.Google Scholar
  30. [30]
    Yu. Sh. Matros. Catalytic Processes Under Unsteady Conditions. Elsevier, 1986.Google Scholar
  31. [31]
    G.R. Meira. Forced oscillations in continuous polymerization reactors and molecular weight distribution control. A survey. J. Macromol. Sci. Rev. Macromol. Chem., 20(2):207–241, 1981.Google Scholar
  32. [32]
    S. Monaco and D. Normand-Cyrot. Minimum phase nonlinear discrete-time systems and feedback stabilization. In IEEE Conf. Decision and Control (CDC), pages 979–986, Los Angeles, USA, 2002.Google Scholar
  33. [33]
    K. Otawara and L.T. Fan. Enhaming the performance of spontaneously oscillatory chemical reactions. J. Phys. Chem. A, 101:9678–9680, 1997.CrossRefGoogle Scholar
  34. [34]
    K. Otawara and L.T. Fan. Increasing the yield from a chemical reactor with spontaneously oscillatory chemical reactions by a nonlinear feedback mechanism. Comput. Chem. Eng., 25:333–335, 2001.CrossRefGoogle Scholar
  35. [35]
    F. Ozgulsen, R.A. Adomaitis, and A. Cinar. A numerical method for determining optimal parameter values in forced periodic operation. Chem. Eng. Sci., 47:605–613, 1992.CrossRefGoogle Scholar
  36. [36]
    M. Perez and P. Albertos. Self-oscillating and chaotic behaviour of a PI-controlled CSTR with control valve saturation. J. Process Control, 14:51–59, 2004.CrossRefGoogle Scholar
  37. [37]
    F. Delli Priscoli. Robust regulation for nonlinear systems subject to measurable disturbances. In European Control Conference (ECC), pages 3056–30061, 1995.Google Scholar
  38. [38]
    W.F. Ramirez. Process control and identification. Academic Press, London, 1994.Google Scholar
  39. [39]
    W.H. Ray. Periodic operation of polymerization reactors. I& EC Process Design and Development, 7(3):422–426, 1968.CrossRefGoogle Scholar
  40. [40]
    W.H. Ray. On the mathematical modeling of polymerization reactors. J. Macromol. Sci. Rev. Macromol. Ghem., 8:1–56, 1972.Google Scholar
  41. [41]
    W.H. Ray. Advanced process control. McGraw-Hill, New York, 1981.Google Scholar
  42. [42]
    D.M. Ruthven, S. Farooq, and K.S. Knaebel. Pressure Swing Adsorption. VCH Publishers, New York, 1994.Google Scholar
  43. [43]
    F.J. Schork, R.B. Deshpander, and K.W. Leffew. Control of Polymerization Reactors. Marcel Dekker, New York, 1993.Google Scholar
  44. [44]
    J. Spitz, R.L. Laurence, and D.C. Chappalear. An experimental study of a polymerization in periodic operation, in continuous polymerization reactors (Edited by T.C. Bouton and D.C. Chappalear). AIChE Symposium Series, 66(160):86–101, 1976.Google Scholar
  45. [45]
    L.E. Sterman and B.E. Ydstie. Periodic forcing of the CSTR: an application of the generalized π-criterion. A.I.Ch.E. Journal, 37:936–996, 1991.Google Scholar
  46. [46]
    F. Vargas, J. Alvarez, and R. Suarez. Nonlinear study of the periodic operation for free-radical homopolymerization reactors. In IEEE Int. Conf. Control Applications, volume 1, pages 84–89, 1989.Google Scholar
  47. [47]
    N. Watanabe, H. Kurimoto, and M. Matsubara. Periodic control of continuous stirred tank reactor III: Case of multistage reactor. Chem. Eng. Sci., 39:31–36, 1984.CrossRefGoogle Scholar
  48. [48]
    N. Watanabe, H. Kurimoto, M. Matsubara, and K. Onogi. Periodic control of continuous stirred tank reactor II: Case of a nonisothermal single reactor. Chem. Eng. Sci., 37:745–752, 1982.CrossRefGoogle Scholar
  49. [49]
    D.J. Wu, Y. Xie, Z. Ma, and N.H.L. Wang. Design of SMB chromatography for amino acid separations. Ind. Eng. Chem. Res., 37:4023–4035, 1998.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • J. P. García-Sandoval
    • 1
  • B. Castillo-Toledo
    • 1
  • V. González-Álvarez
    • 2
  1. 1.Centro de Investigatión y de Estudios Avanzados del IPNUnidad GuadalajaraMexico
  2. 2.Departamento de Ingeniería QuímicaUniversidad de GuadalajaraMexico

Personalised recommendations