Morphic Computing: Concept and Foundation

  • Germano Resconi
  • Masoud Nikravesh
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 217)


In this paper, we introduce a new type of computation called ‘‘Morphic Computing’’. Morphic Computing is based on Field Theory and more specifically Morphic Fields. We claim that Morphic Computing is a natural extension of Holographic Computation, Quantum Computation, Soft Computing, and DNA Computing. All natural computations bonded by the Turing Machine can be formalised and extended by our new type of computation model – Morphic Computing. In this paper, we introduce the basis for this new computing paradigm.


Morphic computing Morphogenetic computing Morphic fields morphogenetic fields Quantum computing DNA computing Soft computing Computing with words Morphic systems Morphic neural network Morphic system of systems Optical computation by holograms Holistic systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.M. Adleman (1994) ‘‘Molecular Computation Of Solutions To Combinatorial Problems’’. Science (journal) 266 (11): 1021–1024 (1994).Google Scholar
  2. 2.
    H. Bergson (1896), Matter and Memory 1896. (Matiére et mèmoire) Zone Books 1990: ISBN 0-942299-05-1 (published in English in 1911).Google Scholar
  3. 3.
    D. Deutsch (1985). ‘‘Quantum Theory, the Church-Turing Principle, and the Universal Quantum Computer’’. Proc. Roy. Soc. Lond. A400, 97–117.MathSciNetGoogle Scholar
  4. 4.
    R.P. Feynman (1982). ‘‘Simulating Physics with Computers’’. International Journal of Theoretical Physics 21: 467–488.CrossRefMathSciNetGoogle Scholar
  5. 5.
    H.A. Fatmi and G.Resconi (1988), A New Computing Principle, Il Nuovo Cimento Vol.101 B,N.2 - Febbraio 1988 - pp.239–242Google Scholar
  6. 6.
    D. Gabor (1972), Holography 1948–1971, Proc.IEEE Vol. 60 pp 655–668 June 1972.Google Scholar
  7. 7.
    M. Jessel, Acoustique Thèorique, Masson et Cie Editours 1973Google Scholar
  8. 8.
    V. Kotov (1997), ‘‘Systems-of-Systems as Communicating Structures,’’ Hewlett Packard Computer Systems Laboratory Paper HPL-97-124, (1997), pp. 1–15.Google Scholar
  9. 9.
    J. McCarthy, M.L. Minsky, N. Rochester, and C.E. Shannon (1955), Proposal for Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955.Google Scholar
  10. 10.
    M. Nielsen and I. Chuang (2000). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press. ISBN 0-521-63503-9.Google Scholar
  11. 11.
    M. Nikravesh, Intelligent Computing Techniques for Complex systems, in Soft Computing and Intelligent Data Analysis in Oil Exploration, pp. 651–672, Elsevier, 2003.Google Scholar
  12. 12.
    R. Omnés (1994), The Interpretation of Quantum Mechanics , Princeton Series in Physics, 1994.Google Scholar
  13. 13.
    E. Oshins, K.M. Ford, R.V. Rodriguez and F.D. Anger (1992). A comparative analysis: classical, fuzzy, and quantum logic. Presented at 2nd Florida Artificial Intelligence Research Symposium, St. Petersburg, Florida, April 5, 1989. In Fishman, M.B. (Ed.), Advances in artificial intelligence research, Vol. II, Greenwich, CT: JAI Press. Most Innovative Paper Award, 1989, FLAIRS-89, Florida AI Research Symposium.Google Scholar
  14. 14.
    G. Resconi and M. Nikravesh, Morphic Computing, to be published in Forging New Frontiers, 2007Google Scholar
  15. 15.
    G. Resconi and M. Nikravesh, Morphic Computing, Book in Preparation, 2007Google Scholar
  16. 16.
    G. Resconi and M. Nikravesh, Field Theory and Computing with Words, , FLINS 2006, 7th International FLINS Conference on Applied Artificial Intelligence, August 29–31, 2006 ItalyGoogle Scholar
  17. 17.
    G. Resconi and L.C. Jain (2004), Intelligent Agents, Springer, 2004Google Scholar
  18. 18.
    R. Sheldrake (1981), A New Science of Life: The Hypothesis of Morphic Resonance (1981, second edition 1985), Park Street Press; Reprint edition (March 1, 1995)Google Scholar
  19. 19.
    R. Sheldrake (1988), The Presence of the Past: Morphic Resonance and the Habits of Nature (1988), Park Street Press; Reprint edition (March 1, 1995)Google Scholar
  20. 20.
    J.C. Smuts (1926),Holism and Evolution, 1926 MacMillan, Compass/Viking Press 1961 reprint: ISBN 0-598-63750-8, Greenwood Press 1973 reprint: ISBN 0-8371-6556-3, Sierra Sunrise 1999 (mildly edited): ISBN 1-887263-14-4Google Scholar
  21. 21.
    A.M. Turing (1936–7), ‘On computable numbers, with an application to the Entscheidungsproblem’, Proc. London Maths. Soc., ser. 2, 42: 230–265; also in (Davis 1965) and (Gandy and Yates 2001)Google Scholar
  22. 22.
    A.M. Turing (1950), ‘Computing machinery and intelligence’, Mind 50: 433–460; also in (Boden 1990), (Ince 1992)Google Scholar
  23. 23.
    P.Z. Wang and Sugeno M. (1982) , The factor fields and background structure for fuzzy subsets. Fuzzy Mathematics , Vol. 2 , pp.45–54Google Scholar
  24. 24.
    L.A. Zadeh, Fuzzy Logic, Neural Networks and Soft Computing, Communications of the ACM, 37(3): 77–84, 1994.CrossRefMathSciNetGoogle Scholar
  25. 25.
    L.A. Zadeh and M. Nikravesh (2002), Perception-Based Intelligent Decision Systems; Office of Naval Research, Summer 2002 Program Review, Covel Commons, University of California, Los Angeles, July 30th-August 1st, 2002.Google Scholar
  26. 26.
    L.A. Zadeh, and J. Kacprzyk, (eds.) (1999a), Computing With Words in Information/Intelligent Systems 1: Foundations, Physica-Verlag, Germany, 1999a.Google Scholar
  27. 27.
    L.A. Zadeh, L. and J. Kacprzyk (eds.) (1999b), Computing With Words in Information/Intelligent Systems 2: Applications, Physica-Verlag, Germany, 1999b.Google Scholar
  28. 28.
    L.A. Zadeh, Fuzzy sets, Inf. Control 8, 338–353, 1965.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Germano Resconi
    • 1
  • Masoud Nikravesh
    • 2
  1. 1.Catholic UniversityBresciaItaly
  2. 2.EECS DepartmentBISC Program, University of CaliforniaBerkeleyUSA

Personalised recommendations