Skip to main content

Prototypes and Case-Based Reasoning for Medical Applications

  • Chapter
Case-Based Reasoning on Images and Signals

Part of the book series: Studies in Computational Intelligence ((SCI,volume 73))

Summary

Already in the early stages of case-based reasoning (CBR) prototypes were considered as an interesting technique to structure the case base and to fill the knowledge gap between single cases and general knowledge. Unfortunately, later on prototypes never became a hot topic within the CBR community. However, for medical applications they have been used rather regularly, because they correspond to the reasoning of doctors in a natural way. In this chapter, we illustrate the role of prototypes by application programs, which cover all typical medical tasks: diagnosis, therapy, and course analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Strube G, Janetzko D (1990) Episodisches Wissen und fallbasiertes Schließen: Aufgaben für die Wissensdiagnostik und die Wissenspsychologie. Schweizerische Zeitschrift für Psychologie 49 (4): 211–221

    Google Scholar 

  2. Swanson DB, Feltovich PJ, Johnson PE (1977) Psychological Analysis of Physician Expertise: Implications for Design of Decision Support Systems. In: Shires DB, Wolf H (eds.): Proceedings of MEDINFO 77, North-Holland, Amsterdam, pp 161–164

    Google Scholar 

  3. Schank RC (1982) Dynamic Memory: a theory of learning in computer and people. Cambridge University Press, New York

    Google Scholar 

  4. Bareiss R (1989) Exemplar-based knowledge acquisition. Academic Press, San Diego

    MATH  Google Scholar 

  5. Maximini K., Maximini R., Bergmann R.(2003) An Investigation of Generalized Cases. In: Asley, K.D., Bridge, D.G. (eds.): Proc ICCBR 2003, Springer, Berlin Heidelberg New York, pp 261–275

    Google Scholar 

  6. Bellazzi R, Montani S, Portinale l (1998) Retrieval in a prototype-based case library: a case study in diabetes therapy revision. In: Smyth B, Cunningham P (eds) Proc European Workshop on Case-Based Reasoning. Springer-Verlag, Berlin Heidelberg New York, pp 64–75

    Chapter  Google Scholar 

  7. Bichindaritz I (1995) Case-based reasoning adaptive to several cognitive tasks. In: Aamodt A, Veloso M (eds) Case-Based Reasoning Research and Development, Proceedings International Conference on Case-Based Reasoning, ICCBR-95, Springer-Verlag, Berlin Heidelberg New York, pp 391–400

    Google Scholar 

  8. Turner R (1988) Organizing and Using Schematic Knowledge for Medical Diagnosis. In: Kolodner J (ed) Proceedings of a Workshop on Case-Based Reasoning, Florida, pp 435–446

    Google Scholar 

  9. Perner P (2006): A Comparative Study of Catalogue-Based Classification. In: Roth-Berghofer TR et al (eds.): Proc ECCBR, Springer Berlin 301–308

    Google Scholar 

  10. Clancey WJ (1985) Heuristic Classification. Artificial Intelligence 27: 289–350

    Article  Google Scholar 

  11. Selz O (1913) Über die Gesetze des geordneten Denkverlaufs. Stuttgart

    Google Scholar 

  12. Perner P (2004) Are case-based reasoning and dissimilarity-based classification two sides of the same coin?, Journal Engineering Applications of Artificial Intelligence, 15:2 205–216

    Article  Google Scholar 

  13. Taybi H, Lachman RS (1990) Radiology of Syndromes, Metabolic Disorders, and Skeletal Dysplasia. Year Book Medical Publishers, Chicago

    Google Scholar 

  14. Gierl L, Stengel-Rutkowski S (1994) Integrating Consultation and Semi-automatic Knowledge Acquisition in a Prototype-based Architecture: Experiences with Dysmorphic Syndromes. Artificial Intelligence in Medicine 6: 29–49

    Article  Google Scholar 

  15. Clinical Dysmorphology. http://www.clindysmorphol.com

  16. Winter RM, Baraitser M, Douglas JM (1984) A computerised data base for the diagnosis of rare dysmorphic syndromes. Journal of medical genetics 21 (2): 121–123

    Article  Google Scholar 

  17. Stromme P (1991) The diagnosis of syndromes by use of a dysmorphology database. Acta Paeditr Scand 80 (1): 106–109

    Article  MathSciNet  Google Scholar 

  18. Weiner F, Anneren G (1989) PC-based system for classifying dysmorphic syndromes in children. Computer Methods and Programs in Biomedicine 28 111–117

    Article  Google Scholar 

  19. Evans CD (1995) A case-based assistant for diagnosis and analysis of dysmorphic syndromes. International Journal of Medical Informatics 20: 121–131

    Article  Google Scholar 

  20. Tversky A (1977) Features of Similarity. Psychological Review 84 (4): 327–352

    Article  Google Scholar 

  21. Rosch E, Mervis CB (1975) Family Resemblance: Studies in the Internal Structures of Categories. Cognitive Psychology 7: 573–605

    Article  Google Scholar 

  22. Robeson SM, Steyn, DG (1990) Evaluation and comparison of statistical forecast models for daily maximum ozone concentrations. Atmospheric Environment 24 B (2): 303–312

    Google Scholar 

  23. Shahar Y (1999) Timing is Everything: Temporal Reasoning and Temporal Data Maintenance in Medicine. In: Horn W, Shahar Y, Lindberg G, Andreassen S, Wyatt J (eds) Proceedings of AIMDM’99, Springer-Verlag, Berlin Heidelberg New York, 30–46

    Google Scholar 

  24. Haimowitz IJ, Kohane IS (1993) Automated trend detection with alternate temporal hypotheses. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers, San Mateo, pp 146–151

    Google Scholar 

  25. Miksch S, Horn W, Popow C, Paky F (1995) Therapy planning using qualitative trend descriptions. In: Barahona P, Stefanelli M, Wyatt J (eds) Proc AIME’95, Springer-Verlag, Berlin Heidelberg New York, pp 197–208

    Google Scholar 

  26. Lenz M, Auriol E, Manago M (1998) Diagnosis and decision support. In: Lenz M, Bartsch-Spörl B, Burkhard H-D, Wess S (eds) Case-Based Reasoning Technology, From Foundations to Applications., Springer-Verlag, Berlin Heidelberg New York, pp 51–90

    Chapter  Google Scholar 

  27. Smyth B, Keane MT (1998) Adaptation-Guided Retrieval: Questioning the Similarity Assumption in Reasoning. Artificial Intelligence 102: 249–293

    Article  MATH  Google Scholar 

  28. Anderson JR (1989) A theory of the origins of human knowledge. Artificial Intelligence 40, Special Volume on Machine Learning, pp 313–351

    Google Scholar 

  29. Wenkebach U, Pollwein B, Finsterer U (1992) Visualization of large datasets in intensive care. Proc Annu Symp Comput Appl Med Care, pp 18–22

    Google Scholar 

  30. DeSarbo WS et al. (1992) TSCALE: A new multidemensional scaling procedure based on Tversky’s contrast model. Psychometrika 57: 43–69

    Article  MATH  Google Scholar 

  31. Kolodner J (1993) Case-based reasoning. Morgan Kaufmann Publishers, San Mateo

    Google Scholar 

  32. Bueno-Cavanillas A et al. (1994) Influence of nosocomial infection on mortality rate in an intensive care unit. Crit Care Med 22: 55–60

    Google Scholar 

  33. Stottler RH, Henke AL, King JA (1989) Rapid retrieval algorithms for Case-Based Reasoning. In: Proceedings of International Joint Conference on Artificial Intelligence, 233–237

    Google Scholar 

  34. Smyth B, Keane MT (1993) Retrieving adaptable cases: the role of adaptation knowledge in case retrieval. In: Richter MM et al. (eds) Proceedings of 1st European Workshop on Case-Based Reasoning, pp 76–81

    Google Scholar 

  35. Schmidt R, Vorobieva O (2006) Case-Based Reasoning Investigation of Therapy Inefficacy. Knowledge-Based Systems 19 (5): 333–340

    Article  Google Scholar 

  36. Working group for paediatric endocrinology of the German society for endocrinology and of the German society for children and youth medicine (1998) 1–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, R., Waligora, T., Vorobieva, O. (2008). Prototypes and Case-Based Reasoning for Medical Applications. In: Perner, P. (eds) Case-Based Reasoning on Images and Signals. Studies in Computational Intelligence, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73180-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73180-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73178-8

  • Online ISBN: 978-3-540-73180-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics