Skip to main content

Building a Large-Scale Computational Model of a Cortical Neuronal Network

  • Chapter
Lectures in Supercomputational Neurosciences

Part of the book series: Understanding Complex Systems ((UCS))

Summary

We introduce the general framework of the large-scale neuronal model used in the 5th Helmholtz Summer School — Complex Brain Networks. The main aim is to build a universal large-scale model of a cortical neuronal network, structured as a network of networks, which is flexible enough to implement different kinds of topology and neuronal models and which exhibits behavior in various dynamical regimes. First, we describe important biological aspects of brain topology and use them in the construction of a large-scale cortical network. Second, the general dynamical model is presented together with explanations of the major dynamical properties of neurons. Finally, we discuss the implementation of the model into parallel code and its possible modifications and improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural Science, 2000, 4th ed., New York, McGraw Hill.

    Google Scholar 

  2. O. Sporns, G. Tononi, and R. Kötter, The human connectome: a structural description of the human brain, PLoS Comput. Biol. 1(4) (2005) 0245–0251.

    Article  Google Scholar 

  3. J. J. Wright, C. J. Rennie, G. J. Lees, P. A. Robinson, P. D. Bourke, C. L. Chapman, E. Gordon, and D. L. Rowe, Simulated electrocortical activity at microscopic, macroscopic and global scales, Neuropsychopharmacology 28 (2003) S80–S93.

    Article  Google Scholar 

  4. N. Rulkov, I. Timofeev, and M. Bazhenov, Oscillations in large-scale cortical networks: map-based model, J. Comput. Neurosci. 17 (2004) 203–223.

    Article  Google Scholar 

  5. E. M. Izhikevich, J. A. Gally, and G. M. Edelman, Spike-timing dynamics of neuronal groups, Cereb. Cortex 14 (2004) 933–944.

    Article  Google Scholar 

  6. H. Markram, The blue brain project, Nat. Rev. Neurosci. 7 (2006) 153–160.

    Article  Google Scholar 

  7. V. Braitenberg and A. Schüz, Anatomy of the Cortex: Statistics and Geometry, 1991, Springer, Berlin.

    Google Scholar 

  8. D. Rodney and M. Kevan, Neocortex, 459–509, in Synaptical Organisation of the Brain, G. Shepherd, 1991, Springer, New York.

    Google Scholar 

  9. G.-q. Bi and M.-m. Poo, Synaptic modification by correlated activity: Hebb’s postulate revisited, Annu. Rev. Neurosci. 24 (2001) 139–166.

    Article  Google Scholar 

  10. N. Brunel, Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons, J. Comput. Neurosci. 8 (2000) 183–208

    Google Scholar 

  11. P. Kudela, P. J. Franaszczuk, and G. K. Bergey, Changing excitation and inhibition in simulated neural networks: effects on induced bursting behavior, Biol. Cybern. 88 (2003) 276–285.

    Article  MATH  Google Scholar 

  12. V. P. Zhigulin, Dynamical motifs: building blocks of complex dynamics in sparsely connected random networks, Phys. Rev. Lett. 92, 23 (2004) 238701.

    Article  ADS  Google Scholar 

  13. N. Masuda and K. Aihara, Global and local synchrony of coupled neurons in small-world networks, Biol. Cybern. 90 (2004) 302–309.

    Article  MATH  Google Scholar 

  14. L. Lago-Fernández, R. Huerta, F. Corbacho, and J. A. Sigüenza, Fast response and temporal coherent oscillations in small-world networks, Phys. Rev. Lett. 84 (2000) 2758–2761.

    Article  ADS  Google Scholar 

  15. D. Hansel and G. Mato, Existence and stability of persistent states in large neuronal networks, Phys. Rev. Lett. 86 (2001) 4175–4178.

    Article  ADS  Google Scholar 

  16. J. Ito and K. Kaneko, Spontaneous structure formation in a network of chaotic units with variable connection strengths, Phys. Rev. Lett. 88 (2001) 028701.

    Google Scholar 

  17. I. Belykh, E. de Lange, and M. Hasler, Synchronization of bursting neurons: what matters in the network topology, Phys. Rev. Lett. 94 (2005) 188101.

    Article  ADS  Google Scholar 

  18. M. Kaiser and C. C. Hilgetag, Spatial growth of real-world networks, Phys. Rev. E 69 (2004) 036103.

    Article  ADS  Google Scholar 

  19. D. Buxhoeveden and M. F. Casanova, The minicolumn hypothesis in neuroscience, Brain 125 (2002) 935–951.

    Article  Google Scholar 

  20. J. W. Scannell, C. Blakemore, and M. P. Young, Analysis of connectivity in the cat cerebral cortex, J. Neurosci. 15 (1995) 1463–1483.

    Google Scholar 

  21. J. W. Scannell, G. A. P. C. Burns, C. C. Hilgetag, M. A. O’Neill, and M. P. Young, The connectional organization of the cortico-thalamic system of the cat, Cereb. Cortex 9 (1999) 277–299.

    Article  Google Scholar 

  22. D. J. Felleman and D. C. Van Essen, Distributed hierarchical processing in the primate cerebral cortex, Cereb. Cortex 1 (1991) 1–47.

    Article  Google Scholar 

  23. Z. Ding, J. C. Gore, and A. W. Anderson, Classification and quantification of neuronal fiber pathways using diffusion tensor MRI, Magn. Reson. Med. 49 (2003) 716–721.

    Article  Google Scholar 

  24. Neocortical Microcircuit Database, Copyright 2003 Brain & Mind Institute, EPFL, Lausanne, Switzerland, texttthttp://microcircuit.epfl.ch/, (2006)

    Google Scholar 

  25. textttWormAtlas. Z. F. Altun and D. H. Hall (eds.), 2002–2006, texttthttp://www.allowbreak wormatlas.org/, (2006)

    Google Scholar 

  26. Cortical Connectivity in Macaque, texttthttp://cocomac.org/(2006)

    Google Scholar 

  27. Brain Maps, copyright UC Regents Davis campus, 2005–2006, texttthttp://allowbreak brainmaps.org/, (2006)

    Google Scholar 

  28. C. C. Hilgetag, G. A. P. C. Burns, M. A. O’Neill, J. W. Scannell, and M. P. Young, Anatomical connectivity defines the organization of clusters of cortical areas in macaque monkey and cat, Phil. Trans. R. Soc. Lond. B 355 (2000) 91–110.

    Article  Google Scholar 

  29. C. C. Hilgetag and M. Kaiser, Clustered organization of cortical connectivity, Neuroinformatics 2 (2004) 353–360.

    Article  Google Scholar 

  30. O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag, Organization, development and function of complex brain networks, Trends Cogn. Sci 8 (2004) 418–425.

    Google Scholar 

  31. O. Sporns, Network analysis, complexity and brain function, Complexity 8 (2003) 56–60.

    Article  MathSciNet  Google Scholar 

  32. D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393 (1998) 440–442.

    Article  ADS  Google Scholar 

  33. V. M. Eguíluz, D. R. Chialvo, G. Cecchi, M. Baliki, and A. Vania Apkarian, Scale-free brain functional networks, Phys. Rev. Lett. 94 (2005) 018102.

    Article  ADS  Google Scholar 

  34. M. P. Young, The architecture of visual cortex and inferential processes in vision, Spatial Vis. 13 (2000) 137–146.

    Article  Google Scholar 

  35. M. I. Rabinovich, P. Varona, A. I. Selverston, and H. D. I. Abarbanel, Dynamical principles in neuroscience, Rev. Mod. Phys. 78 (2006) 1213–1265.

    Article  ADS  Google Scholar 

  36. E. M. Izhikevich, Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15 (2004) 1063–1070.

    Article  Google Scholar 

  37. J. Rinzel and G. B. Ermentrout, Analysis of neural excitability and oscillations, methods in neuronal modeling: From synapses to networks, 135–169, C. Koch and I. Segev, 1989, The MIT Press, Cambridge, MA.

    Google Scholar 

  38. M. St-Hilaire and A. Longtin, Comparison of coding capabilities of type I and type II neurons, J. Comput. Neurosci 16 (2004) 299–313.

    Article  Google Scholar 

  39. W. J. Freeman, Characteristics of the synchronization of brain activity imposed by finite conduction velocities of axons, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10 (2000) 2307–2322.

    Google Scholar 

  40. E. M. Izhikevich, Polychronization: computation with spikes, Neural Comput. 18 (2006) 245–282.

    Article  MATH  MathSciNet  Google Scholar 

  41. M. V. Ivanchenko, G. V. Osipov, V. D. Shalfeev, and J. Kurths, Synchronized bursts following instability of synchronous spiking in chaotic neural networks, arXiv.org:nlin/0601023 (2006).

    Google Scholar 

  42. S. Song, K. D. Miller, and L. F. Abbot, Competitive Hebbian learning through spike-timing-dependent synaptic plasticity, Nat. Neurosc. 3, 9 (2000) 919–926.

    Google Scholar 

  43. C. W. Eurich, K. Pawelzik, U. Ernst, J. D. Cowan, and J. G. Milton, Dynamics of self-organized delay adaptation, Phys. Rev. Lett. 82 (1999) 1594–1597.

    Article  ADS  Google Scholar 

  44. M. Dhamala, V. K. Jirsa, and M. Ding, Enhancement of neural synchrony by time delay, Phys. Rev. Lett. 92 (2004) 074104.

    Article  ADS  Google Scholar 

  45. N. Kopell, G. B. Ermentrout, M. A. Whittington, and R. D. Traub, Gamma rhythms and beta rhythms have different synchronization properties, Proc. Natl. Acad. Sci. USA 97 (2000) 1867–1872.

    Article  ADS  Google Scholar 

  46. L. Zemanová, C. Zhou, and J. Kurths, Structural and functional clusters of complex brain networks, Physica D 224 (2006) 202–212.

    Article  MATH  ADS  Google Scholar 

  47. C. Zhou, L. Zemanová, G. Zamora, C. C. Hilgetag, and J. Kurths, Hierarchical organization unveiled by functional connectivity in complex brain networks, Phys. Rev. Lett. 97 (2006) 238103.

    Article  ADS  Google Scholar 

  48. A. Morrison, C. Mehring, T. Geisel, A. Aertsen, and M. Diesmann, Advancing the boundaries of high-connectivity network simulation with distributed computing, Neural Comput. 17 (2005) 1776–1801.

    Article  MATH  Google Scholar 

  49. W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable parallel programming with the message-passing interface, 1999, 2nd ed., The MIT Press, Cambridge, MA.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zemanová, L., Zhou, C., Kurths, J. (2007). Building a Large-Scale Computational Model of a Cortical Neuronal Network. In: Graben, P.b., Zhou, C., Thiel, M., Kurths, J. (eds) Lectures in Supercomputational Neurosciences. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73159-7_9

Download citation

Publish with us

Policies and ethics