Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

  • 1049 Accesses

Summary

Neurons within a cortical macrocolumn can be represented in continuum state equations that include axonal and dendritic delays, synaptic densities, adaptation and distribution of AMPA, NMDA and GABA postsynaptic receptors, and back-propagation of action potentials in the dendritic tree. Parameter values are independently specified from physiological data. In numerical simulations, synchronous oscillation and gamma activity are reproduced and a mechanism for self-regulation of cortical gamma is demonstrated. Properties of synchronous fields observed in the simulations are then applied in a model of the self-organization of synapses, using a simple Hebbian learning rule with decay. The patterns of connection of maximally stable configuration are compared to real cortical synaptic connections that emerge in neurodevelopment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. L. Nunez. Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, New York, Oxford. pp. 99–114, 1995.

    Google Scholar 

  2. J. Szentagothai. Local neuron circuits of the neocortex. In: The Neurosciences 4th Study Program. (F. O. Schmitt and F. G. Worden, Eds.). MIT Press, Cambridge, Mass. pp. 399–415, 1979.

    Google Scholar 

  3. V. Braitenberg and A. Schüz. Anatomy of the Cortex: Statistics and Geometry. Springer-Verlag, New York. 1991.

    Google Scholar 

  4. D. A. Scholl. The Organization of the Cerebral Cortex. Wiley, New York. 1956.

    Google Scholar 

  5. D. T. J. Liley and J. J. Wright. Intracortical connectivity of pyramidal and stellate cells: estimates of synaptic densities and coupling symmetry. Network, 5: 175–189, 1994.

    Article  MATH  Google Scholar 

  6. V. B. Mountcastle. An organizing principle for cerebral function: the unit module and the distributed system. In: The Neurosciences 4th Study Program. F. O. Schmitt and F. G. Worden, Eds.). MIT Press, Cambridge, Mass., 1979.

    Google Scholar 

  7. E. R. Kandel, J. H. Schwartz and T. M. Jessell. Principles of Neural Science. 3rd Edition. Prentice-Hall International (UK), London. pp. 421–439, 1991.

    Google Scholar 

  8. A. Basole, L. E. White and D. Fitzpatrick. Mapping multiple features of the population response of visual cortex. Nature, 423: 986–990, 2003.

    Article  ADS  Google Scholar 

  9. D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction, and functional architecture of the in the cat’s visual cortex. J. Physiol., 160: 106–154, 1962.

    Google Scholar 

  10. M. Fiorani, M. G. P. Rosa, R. Gattass and C. E. Rocha-Miranda. Dynamic surrounds of receptive fields in primate striate cortex: a physiological basis for perceptual completion? Proc. Natl. Acad. Sci. USA, 89: 8547–8551, 1992.

    Article  ADS  Google Scholar 

  11. R. Eckhorn, R. Bauer, W. Jordon, M. Brosch, W. Kruse, M. Monk, H. J. Reitböck. Coherent oscillations: a mechanism of feature linking in the in the visual cortex? Biological Cybernetics, 60: 121–130, 1988.

    Article  Google Scholar 

  12. C. M. Gray, P. König, A. K. Engel and W. Singer. Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties. Nature, 388: 334–337, 1989.

    Article  ADS  Google Scholar 

  13. C. M. Gray, A. K. Engel, P. König and W. Singer. Synchronization of oscillatory neuronal responses in cat striate cortex: temporal properties. Visual Neuroscience, 8: 337–347, 1992.

    Article  Google Scholar 

  14. C. M. Gray and W. Singer. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA, 86: 1698–1702, 1989.

    Article  ADS  Google Scholar 

  15. W. Singer and C. M. Gray. Visual feature integration and the temporal correlation hypothesis. Annual Rev. Neuroscience, 18: 555–586, 1995.

    Article  Google Scholar 

  16. M. P. Stryker. Is grandmother an oscillation? Nature, 388: 297–298, 1989.

    Article  ADS  Google Scholar 

  17. J. J. Wright, C. J. Rennie, G. J. Lees, P. A. Robinson, P. D. Bourke, C. L. Chapman, E. Gordon, and D. L. Rowe. Simulated electrocortical activity at microscopic, mesoscopic, and global scales. Neuropsychopharmacology, 28: S80–S93, 2003.

    Google Scholar 

  18. J. J. Wright. EEG simulation: variation of spectral envelope, pulse synchrony and 40 Hz oscillation. Biological Cybernetics, 76: 181–184, 1997.

    Article  MATH  Google Scholar 

  19. P. A. Robinson, C. J. Rennie and J. J. Wright. Synchronous oscillations in the cerebral cortex. Physical Review, E 57:t 4578–4588, 1998.

    Google Scholar 

  20. J. J. Wright, P. D. Bourke and C. L. Chapman. Synchronous oscillation in the cerebral cortex and object coherence: simulation of basic electrophysiological findings. Biological Cybernetics, 83: 341–353, 2000.

    Article  Google Scholar 

  21. C. J. Rennie, J. J. Wright and P. A. Robinson. Mechanisms of cortical electrical activity and emergence of gamma rhythmn. J. Theoretical Biol., 205(1): 17–35, 2000.

    Article  Google Scholar 

  22. C. L. Chapman, P. D. Bourke and J. J. Wright. Spatial eigenmodes and synchronous oscillation: coincidence detection in simulated cerebral cortex. J. Math. Biol., 45: 57–78, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. J. Wright, D. M. Alexander and P. D. Bourke. Contribution of lateral interactions in V1 to organization of response properties. Vision Research, 46: 2703–2720, 2006.

    Article  Google Scholar 

  24. W. J. Freeman. Mass Action in the Nervous System. Academic Press, New York. 1975.

    Google Scholar 

  25. H. Haken. Principles of Brain Functioning. Springer, Berlin. 1996.

    MATH  Google Scholar 

  26. P. L. Nunez. Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, New York, Oxford. 1995.

    Google Scholar 

  27. V. K. Jirsa and H. Haken. Field theory of electromagnetic brain activity. Phys. Rev. Lett., 77: 960–963, 1996.

    Article  ADS  Google Scholar 

  28. P. A. Robinson, C. J. Rennie and J. J. Wright. Propagation and stability of waves of electrical activity in the cortex. Phys. Rev. E, 55: 826–840, 1997.

    Article  ADS  Google Scholar 

  29. P. A. Robinson, C. J. Rennie, D. L. Rowe, S. C. O’Connor, J. J. Wright, E. Gordon} et al. Neurophysical modeling of brain dynamics. Neuropsychopharmacology, 28: S74 – S79, 2003.

    Article  Google Scholar 

  30. R. A. Lester and C. E. Jahr. NMDA channel behavior depends on agonist affinity. J. Neuroscience, 12: 635–643, 1992.

    Google Scholar 

  31. C. Dominguez-Perrot, P. Feltz and M. O. Poulter. Recombinant GABAA receptor desensitization: the role of the gamma2 subunit and its physiological significance. J. Physiol., 497: 145–159, 1996.

    Google Scholar 

  32. W. Hausser and A. Roth. Dendritic and somatic glutamate receptor channels in rat cerebellar Purkinje cells. J. Physiol., 501.1: 77–95, 1997.

    Article  Google Scholar 

  33. K. M. Partin, M. W. Fleck and M. L. Mayer. AMPA receptor flip/flop mutants affecting deactivation, desensitization and modulation of cyclothiazide, aniracetam and thiocyanate. J. Neuroscience, 16: 6634–6647, 1996.

    Google Scholar 

  34. G. J. Stuart and B. Sakmann. Active propagation of somatic action potentials into neocortical cell pyramidal dendrites. Nature, 367: 69–72, 1994.

    Article  ADS  Google Scholar 

  35. A. M. Thompson, D. C. West, J. Hahn and J. Deuchars. Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat cortex. Journal of Physiology (London) 496.1: 81–102, 1997.

    Google Scholar 

  36. A. M. Thompson. Activity-dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro. Journal of Physiology (London) 502.1: 131–147, 1997.

    Article  Google Scholar 

  37. E. R. Kandel, J. H. Schwartz and T. M. Jessell. Principles of Neural Science. 3rd Edition. Prentice-Hall International (UK), London. pp. 81–118, 1991.

    Google Scholar 

  38. W. A. Phillips and W. Singer. In search of common foundations for cortical computations. Behavioral and Brain Sciences, 20: 657–722, 1997.

    Article  Google Scholar 

  39. M. Steriade, I. Timofeev and F. Grenier. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol., 85: 1969–1985, 2001.

    Google Scholar 

  40. K. Kang, M. Shelley and H. Sompolinsky. Mexican Hats and pinwheels in visual cortex. Proc. Natl. Acad. Sci. USA., 100: 2848–2853, 2003.

    Article  ADS  Google Scholar 

  41. S. L. Bressler, R. Coppola and R. Nakamura. Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature, 366: 153–156, 1993.

    Article  ADS  Google Scholar 

  42. S. Grossberg and J. R. Williamson. A neural model of how horizontal and interlaminar connections of visual cortex develop into adult circuits that carry out perceptual grouping and learning. Cerebral Cortex, 11: 37–58, 2001.

    Article  Google Scholar 

  43. W. H. Bosking, Y. Zhang, B. Schofield and D. Fitzpatrick. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neuroscience, 17(6): 2112–2127, 1997.

    Google Scholar 

  44. K. Obermayer and G. G. Blasdel. Geometry of orientation and ocular dominance columns in monkey striate cortex. J. Neuroscience, 13(10): 4114–4129, 1993.

    Google Scholar 

  45. J. J. Wright. Simulation of EEG: dynamic changes in synaptic efficacy, cerebral rhythms and dissipative and generative activity in cortex. Biological Cybernetics, 81: 131–147, 1999.

    Article  MATH  Google Scholar 

  46. Y. Yin, M. T. Henzl, B. Lorber, T. Nakazawa, T. T. Thomas, F. Jiang, R. Langer and L. Benowitz. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nature Neuroscience, 9(6): 843–852, 2006.

    Article  Google Scholar 

  47. M. Tsukada and X. Pan. The spatio-temporal learning rule and its efficiency in separating spatio-temporal patterns. Biological Cybernetics, 92: 139–146, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  48. T. Aihara, Y. Kobayashi and M. Tsukada. Spatiotemporal visualization of long-term potentiation and depression in the hippocampal CA1 area. Hippocampus, 15: 68–78, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wright, J.J. (2007). A Dynamic Model of the Macrocolumn. In: Graben, P.b., Zhou, C., Thiel, M., Kurths, J. (eds) Lectures in Supercomputational Neurosciences. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73159-7_8

Download citation

Publish with us

Policies and ethics