The Performance of Option—Trading Software Agents: Initial Results

  • Omar Baqueiro
  • Wiebe Van der Hoek
  • Peter McBurney
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 599)

Abstract

The growth of e-commerce and the development of distributed processing systems have led to interest among computer scientists in methods for resource allocations across multiple participants (Chevaleyre and Dunne, 2005). GRID systems, for example, allow multiple users access to some resource, such as computer processing power or use of an electron microscope (Foster and Kesselman, 1999).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Black and M.S. Scholes. The pricing of options and corporate liabilities. Journal of Political Economy, 81(3):637–54, 1973.CrossRefGoogle Scholar
  2. Y. Chevaleyre and P.E. Dunne. Multiagent resource allocation. Knowledge Engineering Review, 20(2):143–149, 2005.CrossRefGoogle Scholar
  3. J.C. Cox, S.A. Ross, and M. Rubinstein. Option pricing: A simplified approach. Journal of Financial Economics, 7(3):229–263, 1979.CrossRefGoogle Scholar
  4. B. Espinosa, O.W. van der Hoek, and P. McBurney. Designing agents for derivatives markets. a preliminary framework. In P. Gmytrasiewicz and S. Parsons, editors, Game Theoretic and Decision Theoretic Agents, pages 1–14, 2005.Google Scholar
  5. I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure. Morgan-Kaufmann, 1999.Google Scholar
  6. G.A. Holton. Defining risk. Financial Analysts Journal, 60:19–25, 2004.CrossRefGoogle Scholar
  7. R.G. Palmer and W.B. Arthur. Artificial economic life: a simple model of a stockmarket. Physica D, 75:264–274, 1994.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Omar Baqueiro
    • 1
  • Wiebe Van der Hoek
    • 1
  • Peter McBurney
    • 1
  1. 1.Department of Computer ScienceUniversity of LiverpoolUK

Personalised recommendations