Advertisement

Predicting the Outcome of a Computer Literacy Course Based on a Candidate’s Personal Characteristics

  • Andries J. Burger
  • Pieter J. Blignaut
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4553)

Abstract

People differ and we tend to notice the physical differences among them more readily than we notice their differences in thinking styles. The success of an information system can be influenced by the psychological make-up of an individual. Specific biographical, psychological and cognitive factors were identified that may explain why, with the same amount of computer training and experience, some people will have a higher degree of computer proficiency than others. Two formulas were derived and it was found that different variables predict the computer proficiency of white and black students, respectively.

Keywords

computer proficiency personality learning style anxiety spatial visualisation ability numerical ability scholastic ability mathematics ability computer attitude 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Riding, R., Rayner, S.: Cognitive styles and learning strategies: Understanding style differences in learning and behaviour. David Fulton Publishers Ltd., London (1998)Google Scholar
  2. 2.
    Harrington, K.V., McElroy, J.C., Morrow, P.C.: Computer anxiety and computer-based training: A laboratory experiment. Journal of Education Research 6, 343–358 (1990)Google Scholar
  3. 3.
    Harrison, A.W., Rainer, R.K.: The influence of individual differences on skill in end-user computing. Journal of Management Information Systems 9(1), 93–111 (1992)CrossRefGoogle Scholar
  4. 4.
    Caprara, G.V., Cervone, D.: Personality: Determinants, dynamics, and potentials. Cambridge University Press, Cambridge (2000)Google Scholar
  5. 5.
    Kaplan, H.I., Sadock, B.J.: Synopsis of psychiatry: Behavioural sciences/clinical psychiatry, 8th edn. Lippencott Williams & Wilkins, Baltimore (1998)Google Scholar
  6. 6.
    Pervin, L.A.: Personality: Theory and research, 8th edn. John Wiley & Sons, New York (2001)Google Scholar
  7. 7.
    Möller, A.T.: Wat is persoonlikheid. In: Möller, A.T. (Red), Perspektiewe oor persoonlikheid, pp. 3–23, Butterworth Uitgewers (Edms) Bpk, Durban (1993)Google Scholar
  8. 8.
    Shuell, T.J.: Cognitive conceptions of learning. Review of Educational Research 56, 411–436 (1986)CrossRefGoogle Scholar
  9. 9.
    Schunk, D.H.: Learning theories: An educational perspective, 2nd edn. Englewood Cliffs, Merrill (1996)Google Scholar
  10. 10.
    Keefe, J.W.: Assessing learning styles: An overview. In: Keefe, J.W. (ed.), Student learning styles and brain behaviour, pp. 43–53. National Association of Secondary School Principals, Reston (1986)Google Scholar
  11. 11.
    Kolb, D.A.: Experiential learning: Experience as the source of learning and development. Prentice Hall, Englewood Cliffs (1984)Google Scholar
  12. 12.
    Allport, G.W.: Attitudes. In: Murchison, C.M. (ed.) Handbook of social psychology, pp. 796–834. Clark University Press, Worcester, Mass (1935)Google Scholar
  13. 13.
    Jawahar, I.M., Elango, B.: The effect of attitudes, goal setting and self-efficacy on end user performance. Journal of End User Computing 13(2), 40–45 (2001)Google Scholar
  14. 14.
    Nickell, G.S., Pinto, J.N.: The computer attitude scale. Computers in Human Behavior 2, 301–306 (1986)CrossRefGoogle Scholar
  15. 15.
    Kernan, M.C., Howard, G.S.: Computer anxiety and computer attitudes: An investigation of construct and predictive validity issues. Educational and Psychological Measurement 50, 681–690 (1990)CrossRefGoogle Scholar
  16. 16.
    O’Quin, K., Kinsey, T.G., Beery, D.: Effectiveness of a microcomputer-training workshop for college professionals. Computers in Human Behaviour 3, 85–94 (1987)CrossRefGoogle Scholar
  17. 17.
    Szajna, B., Mackay, J.M.: Predictors of learning performance in a computer-user training environment: A path-analytic study. International Journal of Human-Computer Interaction 7(2), 167–185 (1995)CrossRefGoogle Scholar
  18. 18.
    Henderson, R.D., Deane, F.P., Ward, M.J.: Occupational differences in computer-related anxiety: Implications for the implementation of a computerised patient management information system. Behaviour and Information Technology 14(1), 23–31 (1995)CrossRefGoogle Scholar
  19. 19.
    Higgins, D.L.: Anxiety as a function of perception: A theory about anxiety and a procedure to reduce symptoms to manageable levels. In: Yapko, M.D. (ed.) Brief therapy approaches to treating anxiety and depression, pp. 245–263. Brunner / Mazel, Inc., New York (1989)Google Scholar
  20. 20.
    Sims, A., Snaith, P.: Anxiety in clinical practice. John Wiley & Sons, Chichester (1988)Google Scholar
  21. 21.
    Beck, A.T., Emery, G.: Anxiety disorders and phobias: A cognitive perspective. Basic Books, New York (1985)Google Scholar
  22. 22.
    Rakes, S.B.: Computer anxiety. Training and Development Journal 43(8), 25–29 (1989)Google Scholar
  23. 23.
    Ekstrom, R.B., French, J.W., Harmon, H.H.: Manual for kit of factor-referenced cognitive tests. Educational Testing Service. Princeton (1976)Google Scholar
  24. 24.
    Norman, K.L.: Spatial visualization – A gateway to computer-based technology. Journal of Special Education Technology XII, 3, 195–206 (1994)Google Scholar
  25. 25.
    Vicente, K.J., Hayes, B.C., Williges, R.C.: Assaying and isolating individual differences in searching a hierarchical file system. Human Factors 29, 349–359 (1987)Google Scholar
  26. 26.
    Norman, K.L., Butler, S.: Search by uncertainty: Menu selection by target probability. Technical report (No: CAR-TR-432 / CS-TR-2230): University of Maryland (1989)Google Scholar
  27. 27.
    Butler, S.A.: The effect of method of instruction and spatial visualization ability on the subsequent navigation of a hierarchical database. Technical report No: CAR-TR-488 / CS-TR-2398): University of Maryland (1990)Google Scholar
  28. 28.
    Blignaut, P.J.: Usability of a computerised patient record system in a busy township primary health care clinic: A feasibility study. Unpublished doctoral thesis, University of the Orange Free State, Bloemfontein (1999)Google Scholar
  29. 29.
    Koenderman, T.: SA media facts. Tony Koenderman’s Ad Review, Johannesburg (2003)Google Scholar
  30. 30.
    Gressard, C.P., Loyd, B.H.: Validation studies of a new computer attitude scale. Association for Educational Data Systems Journal 18, 295–301 (1986)Google Scholar
  31. 31.
    Cattell, R.B., Scheier, I.H., Madge, E.M.: Handleiding vir die IPAT-Angsskaal. Nasionale Buro vir Opvoedkundige en Maatskaplike Navorsing, Pretoria (1968)Google Scholar
  32. 32.
    Fouché, F.A., Verwey, F.A.: Manual for the Senior Aptitude Tests 1978 edition (SAT 78). Human Science Research Council, Pretoria (1978)Google Scholar
  33. 33.
    Costa, P.T., McCrae, R.R.: Revised NEO Personality Inventory (NEO PI-R) and NEO Five-Factor Inventory (NEO-FFI): Professional manual. Psychological Assessment Resources, Inc., Lutz, FL (1992)Google Scholar
  34. 34.
    Kolb, D.A.: Learning style inventory: Technical manual. McBear, Boston (1976)Google Scholar
  35. 35.
    Burger, A.J., Blignaut, P.J.: A computer literacy course may initially be detrimental to students’ attitudes towards computers. Paper presented at the Annual Conference of the South African Institute of Computer Scientists and Information Technologists (SAICSIT), Stellenbosch (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andries J. Burger
    • 1
  • Pieter J. Blignaut
    • 1
  1. 1.University of the Free StateSouth Africa

Personalised recommendations