A Three-Level Approach for Analyzing User Behavior in Ongoing Relationships

  • Enric Mor
  • Muriel Garreta-Domingo
  • Julià Minguillón
  • Sheena Lewis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4553)

Abstract

This paper describes a hybrid methodology to study users in ongoing relationships based on three levels of user data analysis. Most user-centered design methods are ideal for the analysis of users’ needs, wants, and expectations at a specific point in time. However, nowadays, most online applications and services have recurrent users whose characteristics might vary not only over time but also depending on the task they want to accomplish and the context in which they are accomplishing it. Therefore, the common user research methods are not adequate for providing long term feedback. Our three-level approach methodology combines qualitative and quantitative data for analyzing user behavior over an extended period of time. The present study is based on an e-learning environment, which is a great example of a website with recurrent users whose behavior changes over time.

Keywords

Long-term human-computer interaction ongoing relationships log analysis combining methodologies user behavior virtual learning environments e-learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carbó, J.M., Mor, E., Minguillón, J.: User Navigational Behavior in e-Learning Virtual Environments. In: Proceedings of the ACM International Conference on Web Intelligence, pp. 243–249 (2005)Google Scholar
  2. 2.
    Catledge, L.D., Pitkow, J.E.: Characterizing Browsing Strategies in the World-Wide Web, pp. 1065–1073 (1995)Google Scholar
  3. 3.
    Cooley, R., Mobasher, B., Srivastava, J.: Data Preparation for Mining World Wide Web Browsing Patterns. Knowledge and Information Systems 1(1), 5–32 (1999)Google Scholar
  4. 4.
    Dreyfus, S.E., Dreyfus, H.L.: A Five-Stage Model of the Mental Activities Involved in Directed Skill Acquisition, University of California, Berkley (1980)Google Scholar
  5. 5.
    El-Ramly, M., Stroulia, E.: Analysis of web-usage behavior for focused web sites: a case study. Journal of Software Maintenance and Evolution: Research and Practice 16(1-2), 129–150 (2004)CrossRefGoogle Scholar
  6. 6.
    Ericsson, K.A., Lehmann, A.C.: Expert and Exceptional Performance: Evidence of Maximal Adaption to Task Constraints. Annual Review of Psychology, vol. 47 (1996)Google Scholar
  7. 7.
    Hackos, J.T., Redish, J.C.: User and task analysis for interface design. John Wiley & Sons, Inc., New York, NY, USA (1998)Google Scholar
  8. 8.
    Hartson, H.R., Castillo, J.C.: Remote evaluation for post-deployment usability improvement. In: AVI 1998. Proceedings of the Working Conference on Advanced Visual interfaces, L’Aquila, Italy, May 24-27, 1998, pp. 22–29. ACM Press, New York, NY (1998)CrossRefGoogle Scholar
  9. 9.
    Hilbert, D.M., Redmiles, D.F.: Extracting Usability Information from User Interface Events. ACM Comput. Surv. 32, 384–421 (2000)CrossRefGoogle Scholar
  10. 10.
    Hübscher, R., Puntambekar, S.: Modeling Learners as Individuals and as Groups. In: De Bra, P., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 300–303. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Ivory, M.Y., Hearst, M.A.: The State of the Art in Automating Usability Evaluation of User Interfaces. ACM Comput. Surv. 33, 470–516 (2001)CrossRefGoogle Scholar
  12. 12.
    Juvina, I., Trausan-Matu, S., Iosif, G., et al.: Analysis of Web Browsing Behavior - a Great Potential for Psychological Research, pp. 170–178 (2002)Google Scholar
  13. 13.
    Juvina, I., van Oostendorp, H.: Individual differences and behavioral aspects involved in modeling web navigation, vol. 3196 (2004)Google Scholar
  14. 14.
    Kort, J., Poot, H.d.: Usage Analysis: Combining Logging and Qualitative Methods, pp. 2121–2122 (2005)Google Scholar
  15. 15.
    LaFrance, M.: The quality of expertise: implications of expert-novice differences for knowledge acquisition. SIGART Bull. 108, 6–14 (1989)CrossRefGoogle Scholar
  16. 16.
    Millen, D.: Remote Usability Evaluation: User participation in the Design of a Web-Based email Service. SIGGROUP Bulletin 20(1) (1999)Google Scholar
  17. 17.
    Mor, E., Minguillón, J.: E-learning personalization based on itineraries and long-term navigational behavior. In: Proceedings of the Thirteenth World Wide Web Conference, New York City, NY, vol. 2, pp. 264–265. (2004)Google Scholar
  18. 18.
    Mor, E., Minguillón, J., Santanach, F.: Capturing User Behavior in E-Learning Environments. In: Proceedings of the 3rd International Conference Web Information Systems and Technologies, Barcelona, Spain (2007)Google Scholar
  19. 19.
    Popovic, V.: Expert ans Novice User Differences and Implications for Product Design Usability. In: Proceedings IEA 2000/HFES 2000 Congress, pp. 933–936 (2000)Google Scholar
  20. 20.
    Prümper, J., Frese, M., Zapf, D., Brodbeck, F.C.: Errors in computerized office work: differences between novice and expert users. SIGCHI Bull. 23(2), 63–66 (1991)CrossRefGoogle Scholar
  21. 21.
    Renaud, K., Gray, P.: Making Sense of Low-Level Usage Data to Understand User Activities, pp.115–124 (2004)Google Scholar
  22. 22.
    Spiliopoulou, M.: Web Usage Mining for Web Site Evaluation. Commun. ACM 43, 127–134 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Enric Mor
    • 1
  • Muriel Garreta-Domingo
    • 2
  • Julià Minguillón
    • 1
  • Sheena Lewis
    • 3
  1. 1.Computer Science, Multimedia and Telecommunication Dept - Universitat Oberta de, Catalunya - Rambla del Poblenou 156, 08018 BarcelonaSpain
  2. 2.Learning Technologies Dept - Universitat Oberta de Catalunya - Av. Tibidabo 39, 08035 BarcelonaSpain
  3. 3.College of Computing - Georgia Institute of Technology - 85 5th Street Atlanta, GA,30318USA

Personalised recommendations