Advertisement

Enhancing the Map Usage for Indoor Location-Aware Systems

  • Hui Wang
  • Henning Lenz
  • Andrei Szabo
  • Joachim Bamberger
  • Uwe D. Hanebeck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4551)

Abstract

Location-aware systems are receiving more and more interest in both academia and industry due to their promising prospective in a broad category of so-called Location-Based-Services (LBS). The map interface plays a crucial role in the location-aware systems, especially for indoor scenarios. This paper addresses the usage of map information in a Wireless LAN (WLAN)-based indoor navigation system. We describe the benefit of using map information in multiple algorithms of the system, including radio-map generation, tracking, semantic positioning and navigation. Then we discuss how to represent or model the indoor map to fulfill the requirements of intelligent algorithms. We believe that a vector-based multi-layer representation is the best choice for indoor location-aware system.

Keywords

Location-Aware Systems WLAN Positioning Map Representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Patterson, C.A., Muntz, R.R., Pancake, C.M.: Challenges in location-aware Computing. Pervasive Computing 2, 80–89 (2003)CrossRefGoogle Scholar
  2. 2.
    Weiser, M.: Hot Topics: Ubiquitous Computing. IEEE Computer (1993)Google Scholar
  3. 3.
    Hightower, J., Borriello, G.: Location System for Ubiquitous Computing. IEEE computer (2001)Google Scholar
  4. 4.
    Koshima, H., Hoshen, J.: Personal Locator Services Emerge. IEEE Spectrum (2000)Google Scholar
  5. 5.
    Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based User Location and Tracking system. Proceedings of IEEE INFOCOM 2000 2(3), 775–784 (2000)Google Scholar
  6. 6.
    Wang, H.: Fusion of Information Sources for Indoor Positioning with Field Strength Measurements. Master thesis, Department of Electrical Engineering and Information Technology, TU-München (2005)Google Scholar
  7. 7.
    Obradovic, D., Lenz, H., Schupfner, M.: Sensor Fusion in Siemens Car Navigation System. In: Proceedings of IEEE Conference on Machine Learning and Signal Processing, São Luis, Brazil (2004)Google Scholar
  8. 8.
    Obradovic, D., Lenz, H., Schupfner, M.: Fusion of Map and Sensor Data in a Modern Car Navigation System. Journal of VLSI Signal Processing 45, 111–122 (2006)CrossRefGoogle Scholar
  9. 9.
    Wölfle, G., Wahl, R., Wertz, P., Wildbolz, P., Landstorfer, F.: Dominant Path Prediction Model for Indoor Scenarios. German Microwave Conference (GeMIC), Ulm, Germany (2005)Google Scholar
  10. 10.
    Zarubo, G.V., Huber, M., Kamanger, F.A., Chlamtac, I.: Monte Carlo Sampling Based In-home Location Tracking With Minimal RF Infrastructure Requirements. In: Proceedings of GLOBECOM (2004)Google Scholar
  11. 11.
    Wang, H., Lenz, H., Szabo, A., Bamberger, J., Hanebeck, U.D.: WLAN-Based Pedestrian Tracking Using Particle Filters and Low-Cost MEMS Sensors. In: proceedings of 4th Workshop on Positioning, Navigation and Communication 2007 (WPNC 2007), Hannover, Germany (2007)Google Scholar
  12. 12.
    Evennou, F., Marx, F.: Advanced Integration of WiFi and Inertial Navigation Systems for Indoor Mobile Positioning. EURASIP Journal on Applied Signal Processing 2006, Article ID 86706, 1–11 (2006)CrossRefGoogle Scholar
  13. 13.
    Liao, L., Fox, D., Hightower, J., Kautz, H., Schulz, D.: Voronoi Tracking: Location Estimation Using Sparse and Noisy Sensor Data. In: Proceedings of IROS-03 (2003)Google Scholar
  14. 14.
    Evennou, F., et al.: Map-aided Indoor Mobile Positioning System using Particle Filter. In: Proceedings of WCNC (2005)Google Scholar
  15. 15.
    Wang, H., Lenz, H., Szabo, A., Hanebeck, U.D., Bamberger, J.: Fusion of Barometric Sensors, WLAN Signals and Building Information for 3-D Indoor/Campus Localization. In: Proceedings of International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2006), S. 426–432, Heidelberg, Germany (2006)Google Scholar
  16. 16.
    Retscher, G.: Location Determination in Indoor Environments for Pedestrian Navigation. In: Proceedings of IEEE/ION PLANS 2006, San Diego, USA (2006)Google Scholar
  17. 17.
    Bohn, J., Vogt, H.: Robust Probabilistic Positioning based on High-Level Sensor-Fusion and Map Knowledge. Technical Report, ETH, Zurich, Switzerland (2003)Google Scholar
  18. 18.
  19. 19.
    Activity, S.: Spatial Location BOF of IETF (2000), http://www-nrc.nokia.com/ietf-spatial
  20. 20.
    Leonhardt, U.: Supporting Location-awareness in Open Distributed Systems. PhD thesis, Department of Computing, Imperial College, London (1998)Google Scholar
  21. 21.
    Narayanan, A.K.: Realms of States: a Framework for Location Aware Mobile Computing. In: Proceedings of the first international workshop on mobile commerce (2001)Google Scholar
  22. 22.
    Hu, H., Lee, D.-L.: Semantic Location Modeling for Location Navigation in Mobile Environment. In: Proceedings of the 2004 IEEE international conference on mobile data management (MDM 2004) (2004)Google Scholar
  23. 23.
    Parodi, B.B., Lenz, H., Szabo, A., Wang, H., Horn, J., Bamberger, J., Obradovic, J.: Initialization and Online-Learning of RSS Maps for Indoor/Campus Localization. In: Proceedings of IEEE/ION PLANS 2006, San Diego, USA (2006)Google Scholar
  24. 24.
    Parodi, B.B., Lenz, H., Szabo, A., Bamberger, J., Horn, J.: SLL: Statistical Conditions and Algebraic Properties. In: Proceedings of 4th Workshop on Positioning, Navigation and Communication 2007 (WPNC 2007), Hannover, Germany (2007)Google Scholar
  25. 25.
    Parodi, B.B., Lenz, H., Szabo, A., Bamberger, J., Horn, J.: Algebraic and Statistical Conditions for Use of SLL. In: Proceedings of European Control Conference 2007, Greece (2007)Google Scholar
  26. 26.
    Lott, M., Forkel, I.: A Multi-Wall-and Floor Model for Indoor Radio Propagation. Vehicular Technology Conference (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hui Wang
    • 1
    • 2
  • Henning Lenz
    • 1
  • Andrei Szabo
    • 1
  • Joachim Bamberger
    • 1
  • Uwe D. Hanebeck
    • 2
  1. 1.Siemens AG, Corporate Technology, Information and Communications, CT IC4, Otto-Hahn-Ring 6, 81739, MunichGermany
  2. 2.Intelligent Sensor-Actuator-Systems Laboratory, Institute of Computer Science and Engineering, Universität Karlsruhe (TH)Germany

Personalised recommendations