Skip to main content

Distributed Facility Location Algorithms for Flexible Configuration of Wireless Sensor Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4549))

Abstract

Many self-configuration problems that occur in sensor networks, such as clustering or operator placement for in-network data aggregation, can be modeled as facility location problems. Unfortunately, existing distributed facility location algorithms are hardly applicable to multi-hop sensor networks. Based on an existing centralized algorithm, we therefore devise equivalent distributed versions which, to our knowledge, represent the first distributed approximations of the facility location problem that can be practicably implemented in multi-hop sensor networks with local communication. Through simulation studies, we demonstrate that, for typical instances derived from sensor-network configuration problems, the algorithms terminate in only few communication rounds, the runtime does not increase with the network size, and, finally, that our implementation requires only local communication confined to small network neighborhoods. In addition, we propose simple extensions to our algorithms to support dynamic networks with varying link qualities and node additions and deletions. Using link quality traces collected from a real sensor network deployment, we demonstrate the effectiveness of our algorithms in realistic multi-hop sensor networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley, Chichester (2005)

    Google Scholar 

  2. Cerpa, A., Estrin, D.: ASCENT: Adaptive Self-Configuring Sensor Networks Topologies. In: Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’02), New York (June 2002)

    Google Scholar 

  3. Basagni, S., Mastrogiovanni, M., Petrioli, C.: A performance comparison of protocols for clustering and backbone formation in large scale ad hoc networks. In: Proceedings of the 1st IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS’04), IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  4. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks. In: Proceedings of the 5th Symposium on Operating Systems Design and Implementation (OSDI’02), Boston, MA, USA (December 2002)

    Google Scholar 

  5. Gnawali, O., Greenstein, B., Jang, K.Y., Joki, A., Paek, J., Vieira, M., Estrin, D., Govindan, R., Kohler, E.: The TENET architecture for tiered sensor networks. In: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems (SENSYS’06), Boulder, CO, USA (November 2006)

    Google Scholar 

  6. Gehweiler, J., Lammersen, C., Sohler, C.: A distributed O(1)-approximation algorithm for the uniform facility location problem. In: Proceedings of the 18th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’06), Cambridge, MA, USA (2006)

    Google Scholar 

  7. Moscibroda, T., Wattenhofer, R.: Facility location: Distributed approximation. In: Proceedings of the 24th ACM Symposium on Principles of Distributed Computing (PODC’05), pp. 108–117. ACM Press, New York (2005)

    Google Scholar 

  8. Chudak, F., Erlebach, T., Panconesi, A., Sozio, M.: Primal-dual distributed algorithms for covering and facility location problems. Unpublished Manuscript (2005)

    Google Scholar 

  9. Frank, C., Römer, K.: Algorithms for generic role assignment in wireless sensor networks. In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems (SENSYS’05), San Diego, CA, USA (November 2005)

    Google Scholar 

  10. Vygen, J.: Approximation algorithms for facility location problems. Technical Report 05950-OR, Research Institute for Discrete Mathematics, University of Bonn (2005)

    Google Scholar 

  11. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4) (1998)

    Google Scholar 

  12. Hochbaum, D.S.: Heuristics for the fixed cost median problem. Mathematical Programming 22(1), 148–162 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. Journal of Algorithms 31, 228–248 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for metric facility location problems. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, Springer, Heidelberg (2002)

    Google Scholar 

  15. Jain, K., Vazirani, V.V.: Primal-dual approximation algorithms for metric facility location and k-median problems. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS’99), pp. 2–13. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  16. Krivitski, D., Schuster, A., Wolff, R.: A local facility location algorithm for sensor networks. In: Prasanna, V.K., Iyengar, S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, Springer, Heidelberg (2005)

    Google Scholar 

  17. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. Journal of the ACM 50, 795–824 (2003)

    Article  MathSciNet  Google Scholar 

  18. BTnodes (2006), www.btnode.ethz.ch

  19. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multihop routing in sensor networks. In: Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (SENSYS’03), Los Angeles, CA, USA (November 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

James Aspnes Christian Scheideler Anish Arora Samuel Madden

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Frank, C., Römer, K. (2007). Distributed Facility Location Algorithms for Flexible Configuration of Wireless Sensor Networks. In: Aspnes, J., Scheideler, C., Arora, A., Madden, S. (eds) Distributed Computing in Sensor Systems. DCOSS 2007. Lecture Notes in Computer Science, vol 4549. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73090-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73090-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73089-7

  • Online ISBN: 978-3-540-73090-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics