Advertisement

Abstract

This paper reports on ongoing work on the project of representing the Kenzo system [15] in type theory [11].

Keywords

Abelian Group Composition Operator Short Exact Sequence Type Theory Category Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aransay, J.M.: Razonamiento mecanizado en álgebra homológica. PhD thesis (2006)Google Scholar
  2. 2.
    Artin, M., Grothendieck, A., Verdier, J,-L.: Univers Séminaire de Géométrie Algébrique du Bois Marie -,1963-64 - Théorie des topos et cohomologie étale des schémas - (SGA 4) - vol. 1, LNM 269, 185-217, Springer-Verlag, Berlin, New York (1963)Google Scholar
  3. 3.
    Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  4. 4.
    de Bruijn, N.G.: Telescopic mappings in typed lambda calculus. Inform. and Comput. 91(2), 189–204 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Barakat, M., Robertz, D.: homalg: First steps to an abstract package for homological algebra. In: Proceedings of the X meeting on computational algebra and its applications (EACA 2006), Sevilla, Spain, pp. 29–32 (2006)Google Scholar
  6. 6.
    LogiCal project. The Coq Proof Assistant (2007), http://coq.inria.fr/V8.1/refman/index.html
  7. 7.
    Coquand, T.: Metamathematical investigations of a calculus of constructions. Rapport de recherche de l’INRIA (1989)Google Scholar
  8. 8.
    Gregoire, B., Leroy, X.: A Compiled Implementation of Strong Reduction. International Conference on Functional Programming (2002)Google Scholar
  9. 9.
    Huet, G., Saibi, A.: Constructive category theory. In: Proof, language, and interaction. Found. Comput. Ser., pp. 239–275. MIT Press, Cambridge, MA (2000)Google Scholar
  10. 10.
    Landin, P.: The mechanical evaluation of expressions. Comput. J. 6, 308–320 (1964)zbMATHGoogle Scholar
  11. 11.
    Martin-Löf, P.: An intuitionistic theory of types. In: Twenty-five years of constructive type theory (Venice, 1995), pp. 127–172, Oxford Logic Guides, 36, Oxford Univ. Press, New York (1998)Google Scholar
  12. 12.
    Melliès, P.-A., Werner, B.: A Generic Normalization Proof for Pure Type Systems. In: Paulin-Mohring, C., Gimenez, E. (eds.) TYPES 1996. LNCS, Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Miquel, A., Werner, B.: The Not So Simple Proof-Irrelevant Model of CC. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Mines, R., Richman, F., Ruitenburg, W.: A Course in Constructive Algebra. Springer, Heidelberg (1988)zbMATHGoogle Scholar
  15. 15.
    Rubio, J., Sergereart, F.: Constructive Homological Algebra and Applications, Genove Summer School (2006), available at http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/
  16. 16.
    Spiwack, A.: Ajouter des entiers machine à Coq. Master thesis, http://arnaud.spiwack.free.fr/

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Thierry Coquand
    • 1
  • Arnaud Spiwack
    • 2
  1. 1.Göteborg University 
  2. 2.Ecole Normale Supérieure de Cachan 

Personalised recommendations