A Rational Reconstruction of a System for Experimental Mathematics

  • Jacques Carette
  • William M. Farmer
  • Volker Sorge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4573)


In previous papers we described the implementation of a system which combines mathematical object generation, transformation and filtering, conjecture generation, proving and disproving for mathematical discovery in non-associative algebra. While the system has generated novel, fully verified theorems, their construction involved a lot of ad hoc communication between disparate systems. In this paper we carefully reconstruct a specification of a sub-process of the original system in a framework for trustable communication between mathematics systems put forth by us. It employs the concept of biform theories that enables the combined formalisation of the axiomatic and algorithmic theories behind the generation process. This allows us to gain a much better understanding of the original system, and exposes clear generalisation opportunities.


Logical Consequence Binary Operation Theorem Prover General Language Axiomatic Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armando, A., Ranise, S.: From integrated reasoning specialists to “plug-and-play” reasoning components. In: Calmet and Plaza [5], pp. 42–54Google Scholar
  2. 2.
    Armando, A., Zini, D.: Towards Interoperable Mechanized Reasoning Systems: the Logic Broker Architecture. In: AI*IA Notizie Anno XIII, Parma, Italy, vol. 3, pp. 70–75 (2000)Google Scholar
  3. 3.
    Bertoli, P.G., Calmet, J., Giunchiglia, F., Homann, K.: Specification and Integration of Theorem Provers and Computer Algebra Systems. In: Calmet and Plaza [5], pp. 94–106Google Scholar
  4. 4.
    Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: Towards computer-aided mathematical theory exploration. Journal of Applied Logic 4, 470–504 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Calmet, J., Plaza, J. (eds.): AISC 1998. LNCS (LNAI), vol. 1476. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  6. 6.
    Carette, J., Farmer, W.M., Wajs, J.: Trustable communication between mathematical systems. In: Proc. of Calculemus 2003, pp. 58–68 (2003)Google Scholar
  7. 7.
    Church, A.: A Formulation of the Simple Theory of Types. Journal of Symbolic Logic 5, 56–68 (1940)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Colton, S., Meier, A., Sorge, V., McCasland, R.: Automatic generation of classification theorems for finite algebras. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 400–414. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Falconer, E.: Isotopy Invariants in Quasigroups. Transactions of the American Mathematical Society 151(2), 511–526 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Farmer, W.M.: STMM: A set theory for mechanized mathematics. J. Autom. Reasoning 26(3), 269–289 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Farmer, W.M.: Biform theories in Chiron. In: Kauers, M., Windsteiger, W. (eds.) Towards Mechanized Mathematical Assistants. LNCS (LNAI), vol. 4573, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Farmer, W.M., von Mohrenschildt, M.: Transformers for symbolic computation and formal deduction. In: Colton, S., Martin, U., Sorge, V. (eds.) CADE-17 Workshop on the Role of Automated Deduction in Mathematics, pp. 36–45 (2000)Google Scholar
  13. 13.
    Farmer, W.M., von Mohrenschildt, M.: An overview of a formal framework for managing mathematics. Annals of Mathematics and Artificial Intelligence 38, 165–191 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sorge, V., Meier, A., McCasland, R., Colton, S.: Automatic construction and verification of isotopy invariants. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 36–51. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Zimmer, J., Kohlhase, M.: System Description: The MathWeb Software Bus for Distributed Mathematical Reasoning. In: Voronkov, A. (ed.) Automated Deduction - CADE-18. LNCS (LNAI), vol. 2392, Springer, Heidelberg (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jacques Carette
    • 1
  • William M. Farmer
    • 1
  • Volker Sorge
    • 2
  1. 1.Department of Computing and Software, McMaster University, Hamilton, OntarioCanada
  2. 2.School of Computer Science, University of BirminghamUK

Personalised recommendations