Advertisement

Higher order Proof Reconstruction from Paramodulation-Based Refutations: The Unit Equality Case

  • Andrea Asperti
  • Enrico Tassi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4573)

Abstract

In this paper we address the problem of reconstructing a higher order, checkable proof object starting from a proof trace left by a first order automatic proof searching procedure, in a restricted equational framework. The automatic procedure is based on superposition rules for the unit equality case. Proof transformation techniques aimed to improve the readability of the final proof are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asperti, A., Coen, C.S., Tassi, E., Zacchiroli, S.: User Interaction with the Matita Proof Assistant. Journal of Automated Reasoning, Special Issue on User. Interfaces for Theorem Proving (to appear)Google Scholar
  2. 2.
    Ayache, N., Filliâtre, J.C.: Combining the Coq proof assistant with first-order decision procedures (Unpublished)Google Scholar
  3. 3.
    Barrett, C., Berezin, S.: CVC Lite: A New Implementation of the Cooperating Validity Checker. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 515–518. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Déharbe, D., Ranise, S., Fontaine, P.: haRVey, a cocktail of theories, http://harvey.loria.fr/
  5. 5.
    Hurd, J.: Integrating Gandalf and HOL. In: Proceedings of Theorem Proving in Higher Order Logics (TPHOL), pp. 311–321 (1999)Google Scholar
  6. 6.
    Kreitz, C., Schmitt, S.: A Uniform Procedure for Converting Matrix Proofs into Sequent-Style Systems. Information and Computation 162(1-2), 226–254 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Mc Cune, W.: Solution of the Robbins Problem. Journal of Automated Reasoning 19(3), 263–276 (1997)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Meng, J., Paulson, L.: Experiments On Supporting Interactive Proof Using Resolution. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Meng, J., Paulson, L.: Translating Higher-Order Problems to First-Order Clauses. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) ESCoR: Empirically Successful Computerized Reasoning. CEUR Workshop Proceedings, vol. 192, pp. 70–80 (2006)Google Scholar
  10. 10.
    Meng, J., Quigley, C., Paulson, L.: Automation for Interactive Proof: First Prototype. Information and Computation 204(10), 1575–1596 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving. Handbook of Automated Reasoning, 371–443 (2001)Google Scholar
  12. 12.
    Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 298–302. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Paulin-Mohring, C.: Définitions Inductives en Théorie des Types d’Ordre Supŕieur. Habilitation à diriger les recherches, Université Claude Bernard Lyon I (1996)Google Scholar
  14. 14.
    Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Communications 15(2-3), 91–110 (2002)zbMATHGoogle Scholar
  15. 15.
    Riazanov, A.: Implementing an Efficient Theorem Prover. PHD thesis, The University of Manchester (2003)Google Scholar
  16. 16.
    Schmitt, S., Lorigo, L., Kreitz, C., Nogin, A.: Jprover: Integrating connection-based theorem proving into interactive proof assistants. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 421–426. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Slaney, J., Fujita, M., Stickel, M.: Automated Reasoning and Exhaustive Search: Quasigroup Existence Problems. Computers and Mathematics with Applications (1993)Google Scholar
  18. 18.
    Sutcliffe, G., Suttner, C.B.: The TPTP Problem Library: CNF Release v1.2.1. Journal of Automated Reasoning 21(2), 177–203 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tammet, T.: A resolution theorem prover for intuitionistic logic. In: McRobbie, M.A., Slaney, J.K. (eds.) Automated Deduction - Cade-13. LNCS, vol. 1104, Springer, Heidelberg (1996)Google Scholar
  20. 20.
    The Coq Development Team: The Coq Proof Assistant Reference Manual (2006), http://coq.inria.fr/doc/main.html
  21. 21.
    Werner, B.: Une Théorie des Constructions Inductives. PHD thesis, Université Paris VII (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andrea Asperti
    • 1
  • Enrico Tassi
    • 1
  1. 1.Department of Computer Science, University of Bologna, Mura Anteo Zamboni, 7 — 40127 BolognaItaly

Personalised recommendations