Skip to main content

First Steps on Using OpenMath to Add Proving Capabilities to Standard Dynamic Geometry Systems

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4573)


A prototype for a web application designed to symbolically process locus, proof and discovery tasks on geometric diagrams created with the commercial dynamic geometry systems Cabri, The Geometer’s Sketchpad and Cinderella is presented. The application, named LAD (acronym for Locus-Assertion-Discovery) and thought of as a remote add-on for the considered DGS, follows the Groebner basis method relying on CoCoA and a Mathematica kernel for the involved symbolic computations. From the DGS internal textual representation of a geometric diagram, an OpenMath (i.e. semantic based) description of the requested task is created using the elements in the plangeo OpenMath content dictionaries. A review of the elements included in these CDs is given and two new elements proposed, namely locus and discovery. Everything is finally thoroughly illustrated with examples. LAD is freely accessible at .


  • Computer Algebra System
  • Dynamic Geometry
  • Automate Theorem Prove
  • Free Point
  • Discovery Task

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Botana, F., Valcarce, J.L.: A dynamic-symbolic interface for geometric theorem discovery. Computers and Education 38(1-3), 21–35 (2002)

    CrossRef  Google Scholar 

  2. Botana, F.: A Web-based intelligent system for geometric discovery. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 801–810. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  3. Botana, F., Recio, T.: Towards solving the dynamic geometry bottleneck via a symbolic approach. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 92–110. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  4. Buchberger, B.: Groebner Bases: An algorithmic method in polynomial ideal theory. Multidimensional Systems Theory, D. Reidel Publishing Company, pp. 184–231 (1985)

    Google Scholar 

  5. Capani, A., Niesi, G., Robbiano, L.: CoCoA, a system for doing Computations in Commutative Algebra, available via anonymous ftp from:

  6. Chou, S.: Mechanical Geometry Theorem Proving. Reidel, Dordrecht Boston (1988)

    MATH  Google Scholar 

  7. Escribano, J., Abánades, M., Valcarce, J., Botana, F.: On Using OpenMath for Representing Geometric Constructions. In: Proc. 6th Int. Workshop on Automated Deduction in Geometry (ADG 2006), pp. 26–30 (2006)

    Google Scholar 

  8. Fateman, N.: A Critique of OpenMath and Thoughts on Encoding Mathematics (January 2001),

  9. Gao, X.S., Zhang, J.Z., Chou, S.C.: Geometry Expert. Nine Chapters, Taiwan (1998)

    Google Scholar 


  11. Jackiw, N.: The Geometer’s Sketchpad v 4. Key Curriculum Press, Berkeley (2002)

    Google Scholar 


  13. Todd, P.: Geometry Expressions: A Constraint Based Interactive Symbolic Geometry System. Computeralgebra-Rundbrief, vol. 39 (2006)

    Google Scholar 

  14. Hoyles, C., Jones, K.: Proof in Dynamic Geometry Contexts. In: Perspectives on the teaching of Geometry for the 21st Century, pp. 121–128. Kluwer, Dordrecht (1998)

    Google Scholar 

  15. Laborde, J.M., Bellemain, F.: Cabri Geometry II. Texas Instruments, Dallas (1998)

    Google Scholar 






  21. Richter–Gebert, J., Kortenkamp, U.: The Interactive Geometry Software Cinderella. Springer, Berlin (1999)

    Google Scholar 

  22. Roanes–Lozano, E., Roanes–Macías, E., Villar, M.: A bridge between dynamic geometry and computer algebra. Mathematical and Computer Modelling 37(9–10), 1005–1028 (2003)

    CrossRef  MATH  Google Scholar 

  23. Roozemond, D.A.: Automated proofs using bracket algebra with Cinderella and OpenMath. In: Proc. 9th Rhine Workshop on Computer Algebra (RWCA 2004) (2004)

    Google Scholar 

  24. Wang, D.: GEOTHER: A geometry theorem prover. In: McRobbie, M.A., Slaney, J.K. (eds.) Automated Deduction - Cade-13. LNCS, vol. 1104, Springer, Heidelberg (1996)

    Google Scholar 


Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abánades, M.A., Escribano, J., Botana, F. (2007). First Steps on Using OpenMath to Add Proving Capabilities to Standard Dynamic Geometry Systems. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds) Towards Mechanized Mathematical Assistants. MKM Calculemus 2007 2007. Lecture Notes in Computer Science(), vol 4573. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73083-5

  • Online ISBN: 978-3-540-73086-6

  • eBook Packages: Computer ScienceComputer Science (R0)