Abstract
A prototype for a web application designed to symbolically process locus, proof and discovery tasks on geometric diagrams created with the commercial dynamic geometry systems Cabri, The Geometer’s Sketchpad and Cinderella is presented. The application, named LAD (acronym for Locus-Assertion-Discovery) and thought of as a remote add-on for the considered DGS, follows the Groebner basis method relying on CoCoA and a Mathematica kernel for the involved symbolic computations. From the DGS internal textual representation of a geometric diagram, an OpenMath (i.e. semantic based) description of the requested task is created using the elements in the plangeo OpenMath content dictionaries. A review of the elements included in these CDs is given and two new elements proposed, namely locus and discovery. Everything is finally thoroughly illustrated with examples. LAD is freely accessible at http://nash.sip.ucm.es/LAD/LAD.html .
Keywords
- Computer Algebra System
- Dynamic Geometry
- Automate Theorem Prove
- Free Point
- Discovery Task
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Botana, F., Valcarce, J.L.: A dynamic-symbolic interface for geometric theorem discovery. Computers and Education 38(1-3), 21–35 (2002)
Botana, F.: A Web-based intelligent system for geometric discovery. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 801–810. Springer, Heidelberg (2003)
Botana, F., Recio, T.: Towards solving the dynamic geometry bottleneck via a symbolic approach. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 92–110. Springer, Heidelberg (2006)
Buchberger, B.: Groebner Bases: An algorithmic method in polynomial ideal theory. Multidimensional Systems Theory, D. Reidel Publishing Company, pp. 184–231 (1985)
Capani, A., Niesi, G., Robbiano, L.: CoCoA, a system for doing Computations in Commutative Algebra, available via anonymous ftp from: cocoa.dima.unige.it
Chou, S.: Mechanical Geometry Theorem Proving. Reidel, Dordrecht Boston (1988)
Escribano, J., Abánades, M., Valcarce, J., Botana, F.: On Using OpenMath for Representing Geometric Constructions. In: Proc. 6th Int. Workshop on Automated Deduction in Geometry (ADG 2006), pp. 26–30 (2006)
Fateman, N.: A Critique of OpenMath and Thoughts on Encoding Mathematics (January 2001), http://www.cs.berkeley.edu/~fateman
Gao, X.S., Zhang, J.Z., Chou, S.C.: Geometry Expert. Nine Chapters, Taiwan (1998)
Jackiw, N.: The Geometer’s Sketchpad v 4. Key Curriculum Press, Berkeley (2002)
Todd, P.: Geometry Expressions: A Constraint Based Interactive Symbolic Geometry System. Computeralgebra-Rundbrief, vol. 39 (2006)
Hoyles, C., Jones, K.: Proof in Dynamic Geometry Contexts. In: Perspectives on the teaching of Geometry for the 21st Century, pp. 121–128. Kluwer, Dordrecht (1998)
Laborde, J.M., Bellemain, F.: Cabri Geometry II. Texas Instruments, Dallas (1998)
http://www.riaca.win.tue.nl/products/openmath/lib/index.html
Richter–Gebert, J., Kortenkamp, U.: The Interactive Geometry Software Cinderella. Springer, Berlin (1999)
Roanes–Lozano, E., Roanes–Macías, E., Villar, M.: A bridge between dynamic geometry and computer algebra. Mathematical and Computer Modelling 37(9–10), 1005–1028 (2003)
Roozemond, D.A.: Automated proofs using bracket algebra with Cinderella and OpenMath. In: Proc. 9th Rhine Workshop on Computer Algebra (RWCA 2004) (2004)
Wang, D.: GEOTHER: A geometry theorem prover. In: McRobbie, M.A., Slaney, J.K. (eds.) Automated Deduction - Cade-13. LNCS, vol. 1104, Springer, Heidelberg (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Abánades, M.A., Escribano, J., Botana, F. (2007). First Steps on Using OpenMath to Add Proving Capabilities to Standard Dynamic Geometry Systems. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds) Towards Mechanized Mathematical Assistants. MKM Calculemus 2007 2007. Lecture Notes in Computer Science(), vol 4573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73086-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-73086-6_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73083-5
Online ISBN: 978-3-540-73086-6
eBook Packages: Computer ScienceComputer Science (R0)