Advertisement

Executing in Common Lisp, Proving in ACL2

  • Mirian Andrés
  • Laureano Lambán
  • Julio Rubio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4573)

Abstract

In this paper, an approach to integrate an already-written Common Lisp program for algebraic manipulation with ACL2 proofs of properties of that program is presented. We report on a particular property called “cancellation theorem”, which has been proved in ACL2, and could be applied to several problems in the field of Computational Algebraic Topology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aransay, J., Ballarin, C., Rubio, J.: Towards a Higher Reasoning Level in Formalized Homological Algebra. In: Proceedings Calculemus 2003, Aracné Éditrice, pp. 84–88 (2003)Google Scholar
  2. 2.
    Aransay, J., Ballarin, C., Rubio, J.: Four Approaches to Automated Reasoning with Differential Algebraic Structures. In: Buchberger, B., Campbell, J.A. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp. 221–234. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Aransay, J., Ballarin, C., Rubio, J.: A Mechanized Proof of the Basic Perturbation Lemma. PreprintGoogle Scholar
  4. 4.
    Berciano, A., Sergeraert, F.: Software to compute A  ∞ -(co)algebras: Araia & Craic (2006), http://www.ehu.es/aba/araia-craic.htm
  5. 5.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. In: Coq’Art: The Calculus of Inductive Constructions, Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Boulmé, S., Hardin, T., Hirschkoff, D., Ménissier-Morain, V., Rioboo, R.: On the way to certify Computer Algebra systems. In: Proceedings Calculemus 1999, Electronic Notes in Theoretical Computer Science, vol. 23 (1999)Google Scholar
  7. 7.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Transactions on Programming Languages and Systems 8(2), 244–263 (1986)zbMATHCrossRefGoogle Scholar
  8. 8.
    Domínguez, C., Rubio, J., Sergeraert, F.: Modeling Inheritance as Coercion in the Kenzo System. Journal of Universal Computer Science 12(12), 1701–1730 (2006)Google Scholar
  9. 9.
    Domínguez, C., Lambán, L., Rubio, J.: Object-Oriented Institutions to Specify Symbolic Computation Systems. To appear in Rairo Theoretical Informatics and ApplicationsGoogle Scholar
  10. 10.
    Dousson, X., Sergeraert, F., Siret, Y.: The Kenzo program (1999-2007), http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
  11. 11.
    Eilenberg, S., Zilber, J.A.: On products of complexes. American Journal of Mathematics 75, 200–204 (1953)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kaufmann, M., Manolios, P., Moore, J.: Computer-Aided Reasoning: An Approach. Kluwer Academic Press, Boston (2000)Google Scholar
  13. 13.
    Lambán, L., Pascual, V., Rubio, J.: An Object-Oriented Interpretation of the EAT System, Applicable Algebra in Engineering. Communication and Computing 14(3), 187–215 (2003)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Mac Lane, S.: Homology. Springer, Heidelberg (1994)Google Scholar
  15. 15.
    Martín, F.J., Alonso, J.A., Hidalgo, M.J., Ruiz-Reina, J.L.: Formal verification of a generic framework to synthesize SAT-provers. Journal of Automated Reasoning 32, 287–313 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    May, P.: Simplicial Objects in Algebraic Topology, Van Nostrand (1967)Google Scholar
  17. 17.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  18. 18.
    Romero, A., Rubio, J., Sergeraert, F.: Computing Spectral Sequences. Journal of Symbolic Computation 41, 1059–1079 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Rubio, J., Sergeraert, F.: Constructive Algebraic Topology. Bulletin Sciences Mathématiques 126, 389–412 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Rubio, J., Sergeraert, F.: Constructive Homological Algebra, Lectures Notes MAP Summer School (2006), http://map.disi.unige.it/summer_school/index.php?page=2
  21. 21.
    Rubio, J., Sergeraert, F., Siret, Y.: EAT: Symbolic software for effective homology computation, Institut Fourier (1997), ftp://ftp-fourier.ujf-grenoble.fr/pub/EAT

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mirian Andrés
    • 1
  • Laureano Lambán
    • 1
  • Julio Rubio
    • 1
  1. 1.Departamento de Matemáticas y Computación, Universidad de La Rioja, Edificio Vives. Calle Luis de Ulloa s/n, E-26004 LogroñoSpain

Personalised recommendations