Advertisement

Design and Implementation of an Adaptive Neuro-controller for Trajectory Tracking of Nonholonomic Wheeled Mobile Robots

  • Francisco García-Córdova
  • Antonio Guerrero-González
  • Fulgencio Marín-García
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4528)

Abstract

A kinematic adaptive neuro-controller for trajectory tracking of nonholonomic mobile robots is proposed. The kinematic adaptive neuro-controller is a real-time, unsupervised neural network that learns to control a nonholonomic mobile robot in a nonstationary environment, which is termed Self-Organization Direction Mapping Network (SODMN), and combines associative learning and Vector Associative Map (VAM) learning to generate transformations between spatial and velocity coordinates. The transformations are learned in an unsupervised training phase, during which the robot moves as a result of randomly selected wheel velocities. The robot learns the relationship between these velocities and the resulting incremental movements. The neural network requires no knowledge of the geometry of the robot or of the quality, number, or configuration of the robot’s sensors. The efficacy of the proposed neural architecture is tested experimentally by a differentially driven mobile robot.

Keywords

Mobile Robot Direction Mapping Trajectory Tracking Neural Architecture Driving Wheel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9, 589–600 (1998)CrossRefGoogle Scholar
  2. 2.
    Kanayama, Y., Kimura, Y., Miyazaki, F., Noquchi, T.: A stable tracking control method for an autonomous mobile robot. In: Proc. IEEE Int. Conf. Robotics and Automation, Cincinnati, OH, vol. 1, pp. 384–389 (1990)Google Scholar
  3. 3.
    Ping, Z., Nijmeijer, H.: Tracking control of mobile robots: A case study in backstepping. Automatica 33, 1393–1399 (1997)zbMATHCrossRefGoogle Scholar
  4. 4.
    Oriolo, G., Luca, A.D., Vendittelli, M.: WMR control via dynamic feedback linearization: Design, implementation and experimental validation. IEEE Trans. Control. Syst. Technol. 10, 835–852 (2002)CrossRefGoogle Scholar
  5. 5.
    Das, T., Kar, I.N.: Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Transactions on Control SystemsTechnology 14, 501–510 (2006)CrossRefGoogle Scholar
  6. 6.
    De-Luca, A., Oriolo, G., Samson, C.: Feedback control of a nonholonomic car-like robot. In: Laumond, J.P. (ed.) Robot Motion Planning and Control, pp. 171–253. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Novel, B.D., Bastin, G., Campion, G.: Control of nonholonomic wheeled mobile robots by state feedback linearization. Int. J. Rob. Res. 14, 543–559 (1995)CrossRefGoogle Scholar
  8. 8.
    Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Autom. 16, 609–615 (2000)CrossRefGoogle Scholar
  9. 9.
    Corradini, M., Orlando, G.: Robust tracking control of mobile robots in the presence of uncertainties in the dynamical model. J. Robot. Syst. 18, 318–323 (2001)CrossRefGoogle Scholar
  10. 10.
    Dixon, W., Dawson, M., Zergeroglu, E.: Tracking and regulation control of a mobile robot system with kinematic disturbance: A variable structure like approach. ASME Trans. J. Dyn. Syst. Meas. Control 122, 616–623 (2000)CrossRefGoogle Scholar
  11. 11.
    Corradini, M., Leo, T., Orlando, G.: Experimental testing of a discrete-time sliding mode controller for trajectory tracking of a wheeled mobile robot in the presence of skidding effects. J. Robot. Syst. 19, 177–188 (2002)CrossRefGoogle Scholar
  12. 12.
    Chen, F., Liu, C.: Adaptively controlling nonlinear continuous-time systems using multilayer neural networks. IEEE Trans. Automat. Contr. 39, 1306–1310 (1994)zbMATHCrossRefGoogle Scholar
  13. 13.
    Corradini, M., Ippoliti, G., Longhi, S.: Neural networks based control of mobile robots: Development and experimental validation. J. Robot. Syst. 20, 587–600 (2003)CrossRefGoogle Scholar
  14. 14.
    Lin, S., Goldenberg, A.: Neural-network control of mobile manipulators. IEEE Trans. Neural Netw. 12, 1121–1133 (2001)CrossRefGoogle Scholar
  15. 15.
    Grossberg, S., Levine, D.: Neural dynamics of attentionally moduled Pavlovian conditioning: Blocking, interstimulus interval, and secondary reinforcement. Applied Optics 26, 5015–5030 (1987)CrossRefGoogle Scholar
  16. 16.
    Chang, C., Gaudiano, P.: Application of biological learning theories to mobile robot avoidance and approach behaviors. J. Complex Systems 1, 79–114 (1998)zbMATHCrossRefGoogle Scholar
  17. 17.
    Gaudiano, P., Grossberg, S.: Vector associative maps: Unsupervised real-time error-based learning and control of movement trajectories. Neural Networks 4, 147–183 (1991)CrossRefGoogle Scholar
  18. 18.
    Baraduc, P., Guigon, E., Burnod, Y.: Recording arm position to learn visuomotor transformations. Cerebral Cortex 11, 906–917 (2001)CrossRefGoogle Scholar
  19. 19.
    Georgopoulos, A.P.: Neural coding of the direction of reaching and a comparison with saccadic eye movements. In: Cold Spring Harbor Symposia in Quantitative Biology, vol. 55, pp. 849–859 (1990)Google Scholar
  20. 20.
    Caminiti, R., Johnson, P., Urbano, A.: Making arm movements within different parts of space: Dynamic aspects in the primate motor cortex. Journal of Neuroscience 10, 2039–2058 (1990)Google Scholar
  21. 21.
    Rondot, P., De-Recondo, J., Dumas, J.: Visuomotor ataxia. Brain 100, 355–376 (1976)CrossRefGoogle Scholar
  22. 22.
    Lacquaniti, F., Guigon, E., Bianchi, L., Ferraina, S., Caminiti, R.: Representing spatial information for limb movement: Role of area 5 in the monkey. Cerebral Cortex 5, 391–409 (1995)CrossRefGoogle Scholar
  23. 23.
    Fiala, J.C.: Neural Network Models of Motor Timing and Coordination. PhD thesis, Boston University (1996)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Francisco García-Córdova
    • 1
  • Antonio Guerrero-González
    • 1
  • Fulgencio Marín-García
    • 2
  1. 1.Department of System Engineering and Automation 
  2. 2.Department of Electrical Engineering, Polytechnic University of Cartagena (UPCT), Campus Muralla del Mar, 30202, Cartagena, MurciaSpain

Personalised recommendations