Advertisement

Solving Dial-a-Ride Problems with a Low-Level Hybridization of Ants and Constraint Programming

  • Broderick Crawford
  • Carlos Castro
  • Eric Monfroy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4528)

Abstract

This paper is about Set Partitioning formulation and resolution for a particular case of VRP, the Dial-a-ride Problem. Set Partitioning has demonstrated to be useful modeling this problem and others very visible and economically significant problems. But the main disadvantage of this model is the need to explicitly generate a large set of possibilities to obtain good solutions. Additionally, in many cases a prohibitive time is needed to find the exact solution. Nowadays, many efficient metaheuristic methods have been developed to make possible a good solution in a reasonable amount of time. In this work we try to solve it with Low-level Hybridizations of Ant Colony Optimization and Constraint Programming techniques helping the construction phase of the ants. Computational results solving some benchmark instances are presented showing the advantages of using this kind of hybridization.

Keywords

Ant Colony Optimization Constraint Programming Hybrid Algorithm Dial-a-ride Problem Set Partitioning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexandrov, D., Kochetov, Y.: Behavior of the ant colony algorithm for the set covering problem. In: Proc. of Symp. Operations Research, pp. 255–260. Springer, Heidelberg (2000)Google Scholar
  2. 2.
    Alvarenga, G.B., Mateus, G.R.: A two-phase genetic and set partitioning approach for the vehicle routing problem with time windows. In: HIS ’04: Proceedings of the Fourth International Conference on Hybrid Intelligent Systems (HIS’04), Washington, DC, USA, pp. 428–433. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  3. 3.
    Apt, K.R.: Principles of Constraint Programming. Cambridge University Press, Cambridge (2003)Google Scholar
  4. 4.
    Balas, E., Padberg, M.: Set partitioning: A survey. SIAM Review 18, 710–760 (1976)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Balinski, M.L., Quandt, R.E.: On an integer program for a delivery problem. Operations Research 12(2), 300–304 (1964)Google Scholar
  6. 6.
    Beasley, J.E.: Or-library:distributing test problem by electronic mail. Journal of Operational Research Society 41(11), 1069–1072 (1990)CrossRefGoogle Scholar
  7. 7.
    Beasley, J.E., Chu, P.C.: A genetic algorithm for the set covering problem. European Journal of Operational Research 94(2), 392–404 (1996)MATHCrossRefGoogle Scholar
  8. 8.
    Bessiere, C.: Constraint propagation. Technical Report 06020, LIRMM (March 2006), also as Chapter 3 of the Handbook of Constraint Programming, Rossi, F., van Beek, P., Walsh,T. (eds.) Elsevier. Amsterdam (2006)Google Scholar
  9. 9.
    Borndorfer, R., Grotschel, M., Klostermeier, F., Kuttner, C.: Telebus berlin: Vehicle scheduling in a dial-a-ride system. Technical Report SC 97-23, Konrad-Zuse-Zentrum fur Informationstechnik (1997)Google Scholar
  10. 10.
    Castro, C., Moossen, M., Riff, M.C.: A cooperative framework based on local search and constraint programming for solving discrete global optimisation. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 93–102. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Chu, P.C., Beasley, J.E.: Constraint handling in genetic algorithms: the set partitoning problem. Journal of Heuristics 4, 323–357 (1998)MATHCrossRefGoogle Scholar
  12. 12.
    Cordeau, J.-F., Laporte, G.: The dial-a-ride problem (darp): Variants, modeling issues and algorithms. Journal 4OR: A Quarterly Journal of Operations Research 1(2), 89–101 (2003)MATHMathSciNetGoogle Scholar
  13. 13.
    Crawford, B., Castro, C.: Integrating lookahead and post processing procedures with ACO for solving set partitioning and covering problems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1082–1090. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Cullen, F., Jarvis, J., Ratliff, D.: Set partitioning based heuristics for interactive routing. Networks 11, 125–144 (1981)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Dechter, R., Frost, D.: Backjump-based backtracking for constraint satisfaction problems. Artificial Intelligence 136, 147–188 (2002)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the vehicle routing problem with time windows. Oper. Res. 40(2), 342–354 (1992)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.): ANTS 2004. LNCS, vol. 3172. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Dorigo, M., Caro, G.D., Gambardella, L.M.: Ant algorithms for discrete optimization. Artificial Life 5, 137–172 (1999)CrossRefGoogle Scholar
  19. 19.
    Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  20. 20.
    Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)MATHGoogle Scholar
  21. 21.
    Feo, A., Mauricio, G., Resende, A.: A probabilistic heuristic for a computationally difficult set covering problem. OR Letters 8, 67–71 (1989)MATHGoogle Scholar
  22. 22.
    Focacci, F., Laburthe, F., Lodi, A.: Local search and constraint programming. In: Handbook of metaheuristics, Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  23. 23.
    Gagne, C., Gravel, M., Price, W.: A look-ahead addition to the ant colony optimization metaheuristic and its application to an industrial scheduling problem. In: J.S., et al. (eds.) Proceedings of the fourth Metaheuristics International Conference MIC’01, July 2001, pp. 79–84 (2001)Google Scholar
  24. 24.
    Gandibleux, X., Delorme, X., T’Kindt, V.: An ant colony optimisation algorithm for the set packing problem. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 49–60. Springer, Heidelberg (2004)Google Scholar
  25. 25.
    Gopal, R.D., Ramesh, R.: The query clustering problem: A set partitioning approach. IEEE Trans. Knowl. Data Eng. 7(6), 885–899 (1995)CrossRefGoogle Scholar
  26. 26.
    Hadji, R., Rahoual, M., Talbi, E., Bachelet, V.: Ant colonies for the set covering problem. In: Dorigo, M., et al. (eds.) ANTS 2000, pp. 63–66 (2000)Google Scholar
  27. 27.
    Jorgensen, R.M., Jesper, L.: Solving the dial-a-ride problem using genetic algorithms. Journal of the Operational Research Society, Forthcoming (2007)Google Scholar
  28. 28.
    Kelly, J.P., Xu, J.: A set-partitioning-based heuristic for the vehicle routing problem. INFORMS J. on Computing 11(2), 161–172 (1999)MATHMathSciNetGoogle Scholar
  29. 29.
    Kotecha, K., Sanghani, G., Gambhava, N.: Genetic algorithm for airline crew scheduling problem using cost-based uniform crossover. In: Manandhar, S., Austin, J., Desai, U., Oyanagi, Y., Talukder, A.K. (eds.) AACC 2004. LNCS, vol. 3285, pp. 84–91. Springer, Heidelberg (2004)Google Scholar
  30. 30.
    Leguizamón, G., Michalewicz, Z.: A new version of ant system for subset problems. In: Congress on Evolutionary Computation, CEC’99, pp. 1459–1464. IEEE Computer Society Press, Piscataway (1999)Google Scholar
  31. 31.
    Lessing, L., Dumitrescu, I., Stützle, T.: A comparison between ACO algorithms for the set covering problem. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 1–12. Springer, Heidelberg (2004)Google Scholar
  32. 32.
    Levine, D.: A parallel genetic algorithm for the set partitioning problem. Technical Report ANL-94/23 Argonne National Laboratory (May 1994), Available at http://citeseer.ist.psu.edu/levine94parallel.html
  33. 33.
    Maniezzo, V., Milandri, M.: An ant-based framework for very strongly constrained problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 222–227. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  34. 34.
    Meyer, B., Ernst, A.: Integrating ACO and constraint propagation. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 166–177. Springer, Heidelberg (2004)Google Scholar
  35. 35.
    Michel, R., Middendorf, M.: An island model based ant system with lookahead for the shortest supersequence problem. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN V. LNCS, vol. 1498, pp. 692–701. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  36. 36.
    Raidl, G.R.: A unified view on hybrid metaheuristics. In: Almeida, F., Blesa Aguilera, M.J., Blum, C., Moreno Vega, J.M., Pérez Pérez, M., Roli, A., Sampels, M. (eds.) HM 2006. LNCS, vol. 4030, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  37. 37.
    Rekiek, B., Delchambre, A., Saleh, H.A.: Handicapped person transportation: An application of the grouping genetic algorithm. Engineering Applications of Artificial Intelligence 19(5), 511–520 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Broderick Crawford
    • 1
    • 2
  • Carlos Castro
    • 2
  • Eric Monfroy
    • 2
    • 3
  1. 1.Pontificia Universidad Católica de ValparaísoChile
  2. 2.Universidad Técnica Federico Santa María, ValparaísoChile
  3. 3.LINA, Université de NantesFrance

Personalised recommendations