Complex Permittivity Estimation by Bio-inspired Algorithms for Target Identification Improvement

  • David Poyatos
  • David Escot
  • Ignacio Montiel
  • Ignacio Olmeda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4528)


Identification of aircrafts by means of radar when no cooperation exists (Non-Cooperative Target Identification, NCTI) tends to be based on simulations. To improve them, and hence the probability of correct identification, right values of permittivity and permeability need to be used. This paper describes a method for the estimation of the electromagnetic properties of materials as a part of the NCTI problem. Different heuristic optimization algorithms such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), as well as other approaches like Artificial Neural Networks (ANN), are applied to the reflection coefficient obtained via free-space measurements in an anechoic chamber. Prior to the comparison with real samples, artificial synthetic materials are generated to test the performance of these bio-inspired algorithms.


NCTI ANN GA PSO permittivity permeability free-space measurements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schmitt, K.-P., Wölfle, E.: Non-Cooperative Target Identification by Radar; State of the Art and Future. In: Proc. RTO Meeting on Non-Cooperative Air Target Identification Using Radar, Mannheim, Germany (1998)Google Scholar
  2. 2.
    Miller, R., Shephard, D.: Aspects of NCTR for Near-Future Radar. In: Proc. of SET-080 Target Identification and Recognition Using RF Systems, Oslo, Norway (2004)Google Scholar
  3. 3.
    Du, L., Liu, H., Bao, Z., Zhang, J.: A two-distribution compounded statistical model for radar HRRP target recognition. IEEE Transactions on Signal Processing 54(6), 2226–2238 (2006)CrossRefGoogle Scholar
  4. 4.
    Montiel, I., Poyatos, D., González, I., Escot, D., García, C., Diego, E.: FASCRO Code and the Synthetic Database Generation Problem. In: Proc. of SET-080 Target Identification and Recognition Using RF Systems, Oslo, Norway (2004)Google Scholar
  5. 5.
    Rihaczek, A.W., Hershkowitz, S.J.: Theory and Practice of Radar Target Identification. Artech House, Boston (2000)Google Scholar
  6. 6.
    Misra, D.K.: On the measurement of the complex permittivity of materials by an open-ended coaxial probe. IEEE Microwave Guided Wave Letter 5, 161–163 (1995)CrossRefGoogle Scholar
  7. 7.
    Meng, B., Booske, J., Cooper, R.: Extended cavity perturbation technique to determine the complex permittivity of dielectric materials. IEEE Trans. Microwave Theory Tech. 43, 2633–2636 (1995)CrossRefGoogle Scholar
  8. 8.
    Musil, J., Zacek, F.: Microwave Measurements of Complex Permittivity by Free-Space Methods and Their Applications. Elsevier, New York (1986)Google Scholar
  9. 9.
    Montiel, I.: INTA’S Free Space NRL arch System and Calibration for Absorber Material Characterization. In: AMTA 17th Meeting and Symposium, Williamsburg, VA, pp. 323–328 (1995)Google Scholar
  10. 10.
    Weile, D.S., Michielssen, E.: Genetic algorithm optimization applied to electromagnetics: A review. IEEE Transactions on Antennas and Propagation 45(3), 343–353 (1997)CrossRefGoogle Scholar
  11. 11.
    Robinson, J., Rahmat-Samii, Y.: Particle Swarm Optimization in Electromagnetics. IEEE Transactions on Antennas and Propagation 52(2) (2004)Google Scholar
  12. 12.
    Boeringer, D.W., Werner, D.H.: Particle swarm optimization versus genetic algorithms for phased array synthesis. IEEE Transactions on Antennas and Propagation 52(3), 771–779 (2004)CrossRefGoogle Scholar
  13. 13.
    Christodoulou, C., Georgiopoulos, M.: Applications of Neural Networks in Electromagnetics. Artech House, Boston (2001)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • David Poyatos
    • 1
  • David Escot
    • 1
  • Ignacio Montiel
    • 1
  • Ignacio Olmeda
    • 2
  1. 1.Laboratorio de Detectabilidad, Instituto Nacional de Técnica Aeroespacial (INTA), Ctra. Ajalvir Km. 4, 28850, Torrejón de ArdozSpain
  2. 2.Laboratorio Sun Microsystems de Finanzas Computacionales, Universidad de AlcaláSpain

Personalised recommendations