Knowledge-Based Road Traffic Monitoring

  • Antonio Fernández-Caballero
  • Francisco J. Gómez
  • Juan López-López
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4528)


This article presents a knowledge-based application to study and analyze traffic behavior on major roads, using as the main surveillance artefact a video camera mounted on a relatively high place with a significant image analysis field. The system described presents something new which is the combination of both traditional traffic monitoring systems, that is, monitoring to get information on different traffic parameters and monitoring to detect accidents automatically. Therefore, we present a system in charge of compiling information on different traffic parameters. It also has a surveillance module, which can detect a wide range of the most significant incidents on a freeway or highway.


Reference Image Average Speed Heavy Vehicle Vehicle Detection Distance Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cucchiara, R., Piccardi, M., Mello, P.: Image analysis and rule-based reasoning for a traffic monitoringsystem. IEEE Transactions on Intelligent Transportation Systems 1(2), 119–130 (2000)CrossRefGoogle Scholar
  2. 2.
    Fernández, M.A., Fernández-Caballero, A., López, M.T., Mira, J.: Length-Speed Ratio (LSR) as a characteristic for moving elements real-time classification. Real-Time Imaging 9(1), 49–59 (2003)CrossRefGoogle Scholar
  3. 3.
    Fernández-Caballero, A., Mira, J., Fernández, M.A., Lopez, M.T.: Segmentation from motion of non-rigid objects by neuronal lateral interaction. Pattern Recognition Letters 22(14), 1517–1524 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Fernández-Caballero, A., Mira, J., Delgado, A.E., Fernández, M.A.: Lateral interaction in accumulative computation: A model for motion detection. Neurocomputing 50, 341–364 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Spatio-temporal shape building from image sequences using lateral interaction in accumulative computation. Pattern Recognition 36(5), 1131–1142 (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gupte, S., Masoud, O., Martin, R.F.K., Papanikiolopoulos, N.P.: Detection, and classification of vehicles. IEEE Transactions on Intelligent Transportation Systems 3(1), 37–47 (2002)CrossRefGoogle Scholar
  7. 7.
    Ha, D.M., Lee, J.M., Kim, Y.D.: Neural-edge-based vehicle detection and traffic parameter extraction. Image and Vision Computing 22(11), 899–907 (2004)CrossRefGoogle Scholar
  8. 8.
    Hsieh, J.W., Yu, S.H., Chen, Y.S., Hu, W.F.: Automatic traffic surveillance system for vehicle tracking and classification. IEEE Transactions on Intelligent Transportation Systems 7(2), 175–187 (2006)CrossRefGoogle Scholar
  9. 9.
    Ji, X., Wei, Z., Feng, Y.: Effective vehicle detection technique for traffic surveillance systems. Journal of Visual Communication and Image Representation 17(3), 647–658 (2006)CrossRefGoogle Scholar
  10. 10.
    Kastrinaki, V., Zervakis, M., Kalaitzakis, K.: A survey of video processing techniques for traffic applications. Image and Vision Computing 21(4), 359–381 (2003)CrossRefGoogle Scholar
  11. 11.
    López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Visual surveillance by dynamic visual attention method. Pattern Recognition 39(11), 2194–2211 (2006)CrossRefGoogle Scholar
  12. 12.
    Mira, J., Delgado, A.E., Fernández-Caballero, A., Fernández, M.A.: Knowledge modelling for the motion detection task: The algorithmic lateral inhibition method. Expert Systems with Applications 27(2), 169–185 (2004)CrossRefGoogle Scholar
  13. 13.
    Rad, R., Jamzad, M.: Real time classification and tracking of multiple vehicles in highways. Pattern Recognition Letters 26(10), 1597–1607 (2005)CrossRefGoogle Scholar
  14. 14.
    Tai, J.C., Tseng, S.T., Lin, C.P., Song, K.T.: Real-time image tracking for automatic traffic monitoring and enforcement applications. Image and Vision Computing 22(6), 485–501 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Antonio Fernández-Caballero
    • 1
  • Francisco J. Gómez
    • 1
  • Juan López-López
    • 1
  1. 1.Instituto de Investigación en Informática de Albacete (I3A) and, Escuela Politécnica Superior de Albacete, Universidad de Castilla-La Mancha, 02071-AlbaceteEspaña

Personalised recommendations