A Parallel DNA Algorithm Using a Microfluidic Device to Build Scheduling Grids

  • Marc García-Arnau
  • Daniel Manrique
  • Alfonso Rodríguez-Patón
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4527)


Microfluidic systems, which constitute a miniaturization of a conventional laboratory to the dimensions of a chip, are expected to become the key support for a revolution in the world of biology and chemistry. This article proposes a parallel algorithm that uses DNA and such a distributed microfluidic device to generate scheduling grids in polynomial time. Rather than taking a brute force approach, the algorithm presented here uses concatenation and separation operations to gradually build the DNA strings that represent a Multiprocessor Task scheduling problem grids. The microfluidic device used makes for an autonomous system, also enabling it to solve the problem without the need of external control.


Dependency Graph Schedule Grid Inlet Chamber Outlet Chamber Brute Force Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Lipton, R.J.: DNA solution of hard computational problems. Science 268, 542–545 (1995)CrossRefGoogle Scholar
  3. 3.
    Ouyang, Q., Kaplan, P.D., Liu, S., Libchaber, A.: DNA Solution of the Maximal Clique Problem. Science 278, 446–449 (1997)CrossRefGoogle Scholar
  4. 4.
    Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokohama, S., Yokomori, T., Hagiya, M.: Molecular Computation by DNA Hairpin Formation. Science 288, 1223–1226 (2000)CrossRefGoogle Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the theory of NP-completeness. W.H. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  6. 6.
    Dittrich, P.S., Manz, A.: Lab-on-a-chip: microfluidics in drug discovery. Nature Reviews Drug Discovery 5, 210–218 (2006)CrossRefGoogle Scholar
  7. 7.
    Breslauer, D.N., Lee, P.J., Lee, L.P.: Microfluidics-based systems biology. Molecular Biosystems 2, 97–112 (2006)CrossRefGoogle Scholar
  8. 8.
    Hong, J.W., Studer, V., Hang, G., Anderson, W.F., Quake, S.R.: A nanoliter-scale nucleic acid processor with parallel architecture. Nature Biotechnology 22, 435–439 (2004)CrossRefGoogle Scholar
  9. 9.
    Kartalov, E.P., Quake, S.R.: Microfluidic device reads up to four consecutive base pairs in DNA sequencing-by-synthesis. Nucleic acids research 32, 2873–2879 (2004)CrossRefGoogle Scholar
  10. 10.
    Grover, W.H., Mathies, R.A.: An integrated microfluidic processor for single nucleotide polymorphism-based DNA computing. Lab Chip 5, 1033–1040 (2005)CrossRefGoogle Scholar
  11. 11.
    Van Noort, D., Landweber, L.F.: Towards a re-programmable DNA Computer. Natural Computing 4, 163–175 (2005)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Groisman, A., Enzelberger, M., Quake, S.R.: Microfluidic memory and control devices. Science 300, 955–958 (2003)CrossRefGoogle Scholar
  13. 13.
    McCaskill, J.S.: Optically programming DNA computing in microflow reactors. Biosystems 59, 125–138 (2001)CrossRefGoogle Scholar
  14. 14.
    Ledesma, L., Pazos, J., Rodríguez-Patón, A.: A DNA Algorithm for the Hamiltonian Path Problem Using Microfluidic Systems. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 289–296. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Ledesma, L., Manrique, D., Rodríguez-Patón, A.: A Tissue P System and a DNA Microfluidic Device for Solving the Shortest Common Superstring Problem. Soft Computing 9, 679–685 (2005)zbMATHCrossRefGoogle Scholar
  16. 16.
    Livstone, M., Weiss, R., Landweber, L.: Automated Design and Programming of a Microfluidic DNA Computer. Natural Computing 5, 1–13 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Prentice-Hall, Englewood Cliffs (1982), with Ken Steiglitz; second edition by Dover, 1998zbMATHGoogle Scholar
  18. 18.
    Butenko, S., Wilhelm, W.E.: Clique-detection Models in Computational Biochemistry and Genomics. European Journal of Operational Research, To appear (2006)Google Scholar
  19. 19.
    Head, T.: Aqueous simulations of membrane computations. Romanian J. of Information Science and Technology. 5, 355–364 (2002)Google Scholar
  20. 20.
    García-Arnau, M., Manrique, D., Rodríguez-Patón, A.: A DNA algorithm for solving the Maximum Clique Cover Problem. SubmittedGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Marc García-Arnau
    • 1
  • Daniel Manrique
    • 1
  • Alfonso Rodríguez-Patón
    • 1
  1. 1.Artificial Intelligence Department, Universidad Politécnica de Madrid, Boadilla del Monte s/n, 28660 MadridSpain

Personalised recommendations