A Bio-inspired Architecture for Cognitive Audio

  • Pedro Gómez-Vilda
  • José Manuel Ferrández-Vicente
  • Victoria Rodellar-Biarge
  • Agustín Álvarez-Marquina
  • Luis Miguel Mazaira-Fernández
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4527)


A comprehensive view of speech and voice technologies is now demanding better and more complex tools amenable of extracting as much knowledge about sound and speech as possible. Many knowledge-extraction tasks from speech and voice share well-known procedures at the algorithmic level under the point of view of bio-inspiration. The same resources employed to decode speech phones may be used in the characterization of the speaker (gender, age, speaking group, etc.). Based on these facts the present paper examines a hierarchy of sound processing levels at the auditory and perceptual levels on the brain neural paths which can be translated into a bio-inspired audio-processing architecture. Through this paper its fundamental characteristics are analyzed in relation with current tendencies in cognitive audio processing. Examples extracted from speech processing applications in the domain of acoustic-phonetics are presented. These may find applicability in speaker’s characterization, forensics, and biometry, among others.


Speech Recognition Lateral Inhibition Speech Perception Auditory Cortex Inferior Colliculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Delattre, P., Liberman, A., Cooper, F.: Acoustic loci and transitional cues for consonants. J. Acoust. Soc. Am. 27, 769–773 (1955)CrossRefGoogle Scholar
  2. 2.
    Deller, J.R., Proakis, J.G., Hansen, J.H.: Discrete-Time Processing of Speech Signals. Macmillan, New York (1993)Google Scholar
  3. 3.
    Gómez, P., Godino, J.I., Alvarez, A., Martínez, R., Nieto, V., Rodellar, V.: Evidence of Glottal Source Spectral Features found in Vocal Fold Dynamics. In: Proc. of the ICASSP’05, pp. 441–444 (2005)Google Scholar
  4. 4.
    Hermansky, H.: Should Recognizers Have Ears? In: ESCA-NATO Tutorial and Research Workshop on Robust Speech Recognition for Unknown Communication Channels, Pont-à-Mousson, France, 17-18 April 1997, pp. 1–10 (1997)Google Scholar
  5. 5.
    Ferrández, J.M.: Study and Realization of a Bio-inspired Hierarchical Architecture for Speech Recognition. Ph.D. Thesis (in Spanish), Universidad Politécnica de Madrid (1998)Google Scholar
  6. 6.
    Gómez, P., Martínez, R., Rodellar, V., Ferrández, J.M.: Bio-inspired Systems in Speech Perception: An overview and a study case. In: IEEE/NML Life Sciences Systems and Applications Workshop (by invitation), National Institute of Health, Bethesda, Maryland, July 13-14 (2006)Google Scholar
  7. 7.
    Haykin, S.: Neural Networks - A comprehensive Foundation. Prentice-Hall, Upper Saddle River (1999)zbMATHGoogle Scholar
  8. 8.
    Irino, T., Patterson, R.D.: A time-domain, level-dependent auditory filter: the gammachirp. J. Acoust. Soc. Am. 101(1), 412–419 (1997)CrossRefGoogle Scholar
  9. 9.
    Jahne, B.: Digital Image Processing. Springer, Berlin (2005)Google Scholar
  10. 10.
    Mendelson, J.R., Cynader, M.S.: Sensitivity of Cat Primary Auditory Cortex (AI) Neurons to the Direction and Rate of Frequency Modulation. Brain Research 327, 331–335 (1985)CrossRefGoogle Scholar
  11. 11.
    Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)CrossRefGoogle Scholar
  12. 12.
    Ojemann, G.A.: Organization of language cortex derived from investigation during neurosurgery. Sem. Neuros. 2, 297–305 (1990)Google Scholar
  13. 13.
    O’Shaughnessy, D.: Speech Communication. IEEE Press, Los Alamitos (2000)Google Scholar
  14. 14.
    Rauschecker, J.P., Tian, B., Hauser, M.: Processing of Complex Sounds in the Macaque Nonprimary Auditory Cortex. Science 268, 111–114 (1995)CrossRefGoogle Scholar
  15. 15.
    Sams, M., Salmening, R.: Evidence of sharp frequency tuning in human auditory cortex. Hearing Research 75, 67–74 (1994)CrossRefGoogle Scholar
  16. 16.
    Schreiner, C.E.: Time Domain Analysis of Auditory-Nerve Fibers Firing Rates. Curr. Op. Neurobiol. 5, 489–496 (1995)CrossRefGoogle Scholar
  17. 17.
    Secker, H., Searle, C.: Study and Realization of a Bio-inspired Hierarchical Architecture for Speech Recognition. J. Acoust. Soc. Am. 88(3), 1427–1436 (1990)CrossRefGoogle Scholar
  18. 18.
    Sejnowski, T.J., Rosenberg, C.R.: Parallel networks that learn to pronounce English text. Complex Systems 1, 145–168 (1987)zbMATHGoogle Scholar
  19. 19.
    Suga, N.: Cortical Computational Maps for Auditory Imaging. Neural Networks 3, 3–21 (1990)CrossRefGoogle Scholar
  20. 20.
    Suga, N.: Basic Acoustic Patterns and Neural Mechanism Shared By Humans and Animals for Auditory Perception: A Neuroethologist’s view. In: Proceedings of Workshop on the Auditory bases of Speech Perception, ESCA, July 1996, pp. 31–38 (1996)Google Scholar
  21. 21.
    Waibel, A.: Neural Network Approaches for Speech Recognition. In: Furui, S., Sondhi, M.M. (eds.) Advances in Speech Signal Processing, pp. 555–597. Marcel Dekker, New York (1992)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Pedro Gómez-Vilda
    • 1
  • José Manuel Ferrández-Vicente
    • 2
  • Victoria Rodellar-Biarge
    • 1
  • Agustín Álvarez-Marquina
    • 1
  • Luis Miguel Mazaira-Fernández
    • 1
  1. 1.Grupo de Informática Aplicada al Tratamiento de Seal e Imagen, Facultad de Informática, Universidad Politécnica de Madrid, Campus de Montegancedo, s/n, 28660 Madrid 
  2. 2.Dpto. Electrónica, Tecnología de Computadoras, Univ. Politécnica de Cartagena, 30202, Cartagena 

Personalised recommendations