Acetabular forces and contact stresses in active abduction rehabilitation

  • Matej Daniel
  • H. Debevec
  • A. Kristan
  • B. Mavcic
  • Matej Cimerman
  • M. Tonin
Part of the IFMBE Proceedings book series (IFMBE, volume 16)


Operative fixation of fragments in acetabular fracture treatment is not strong enough to allow weight bearing before the bone is healed. In some patients even passive or active non-weight-bearing exercises could lead to dislocation of fragments and posttraumatic osteoarthritis. Therefore, early rehabilitation should avoid loading the acetabulum in the regions of fracture lines. The aim of the paper is to estimate acetabular loading in non-weight-bearing upright, supine and side-lying leg abduction. Three-dimensional mathematical models of the hip joint reaction force and the contact hip stress were used to simulate active exercises in different body positions. The absolute values of the hip joint reaction force and the peak contact hip stress are the highest in unsupported supine abduction (1.3 MPa) and in side-lying abduction (1.2 MPa), lower in upright abduction (0.5 MPa) and the lowest in supported supine abduction (0.2 MPa). The results are in agreement with the clinical guidelines as they indicate that upright abduction should be commenced first.


Contact Stress Acetabular Fracture Gluteus Maximus Gluteus Medius Posttraumatic Osteoarthritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Olson , B. K. Bay, and A. Hamel (1997) Biomechanics of the hip joint and effects of fracture of the acetabulum. Clin Orthop 339: 92–104.CrossRefGoogle Scholar
  2. 2.
    E. Letournel, and R. Judet (1993) Fracture of the acetabulum. Springer, New York.Google Scholar
  3. 3.
    M. Tile, “Fractures of the acetabulum”, in The Rational of Operative Fracture Care, 2nd ed., J. Schatzker and M. Tile, Eds., Berlin: Springer 1996, pp. 271–324.Google Scholar
  4. 4.
    S. A. Olson, B. K. Bay, M. W. Chapman, and N. A. Sharkey (1995) Biomechanical consequences of fracture and repair of the posterior wall of the acetabulum. J Bone Joint Surg (Am) 77: 1184–1192.Google Scholar
  5. 5.
    J. A. Goulet, J. P. Rouleau, D. J. Mason, and S. A, Goldstein, (1994) Comminuted fracture of the posterior wall of the acetabulum. A biomechanical evaluation of fixation methods. J Bone Joint Surg (Am) 76: 1457–1463.Google Scholar
  6. 6.
    S. F. Maurer, B. Mutter, K. Weise, H. Belzl (1997) Rehabilitation nach Hüftgelenkfrakturen. Orthopäde 6: 368–374.Google Scholar
  7. 7.
    S. J. Tackson, D. E. Krebs, and B. A. Harris (1997) Acetabular pressures during hip arthritis exercises. Arthritis Care Res 10: 308–319CrossRefGoogle Scholar
  8. 8.
    D. L. Givens-Heiss, D. E. Krebs, P. O. Riley, et al. (1997) In vivo acetabular contact pressures during rehabilitation, Part I: Acute phase. Phys Ther 72: 691–699, 1992.Google Scholar
  9. 9.
    R. A. Brand (2005) Joint contact stress: a reasonable surrogate for biological processes? Iowa Orthop J 25: 82–94.Google Scholar
  10. 10.
    A. Iglic, V. Kralj-Iglic, M. Daniel, and A. Macek-Lebar (2005) Computer determination of contact stress distribution and the size of the weight-bearing area in the human hip joint. Comput Methods Biomech Biomed Engin 5: 185–192.CrossRefGoogle Scholar
  11. 11.
    M. Ipavec, R. A. Brand, D. R. Pedersen, et al. (1999) Mathematical modelling of stress in the hip during gait. J Biomech 32: 1229–1235.CrossRefGoogle Scholar
  12. 12.
    B. Mavcic, B. Pompe, M. Daniel, et al. (2002) Mathematical estimation of stress distribution in normal and dysplastic human hip. J Orthop Res 20: 1025–1030A.CrossRefGoogle Scholar
  13. 13.
    R.A. Brand, A. Iglic, and V. Kralj-Iglic (2001) Contact stresses in human hip: implications for disease and treatment. Hip Int 11:117–126.Google Scholar
  14. 14.
    E. Genda, N. Konishi, Y. Hasegawa, and T. Miura (1995) A computer simulation study of normal and abnormal hip joint contact pressure. Arch Orthop Trauma Surg 114: 202–206.CrossRefGoogle Scholar
  15. 15.
    H. Legal, “Introduction to the biomechanics of the hip”. in Congenital dysplasia and dyslocation of the hip, D. Tönis Ed., Berlin: Springer-Verlag, 1987, pp. 26–57.Google Scholar
  16. 16.
    R. A. Brand, D. R. Pedersen, D. T.Davy, et al. “Comparison of hip force calculations and measurements in the same patient,” J Arthroplasty., vol. 9, pp. 45–51, 1994.CrossRefGoogle Scholar
  17. 17.
    S. L. Delp, P. Loan, M. G.Hoy, et al. (1990) An interactive graphicsbased model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng 37: 757–767.CrossRefGoogle Scholar
  18. 18.
    D. Tsirakos, V. Baltzopoulos, and R. Bralett. (1997) Inverse optimization: functional and physiological considerations related to the force sharing problem. Crit Rev Biomed Eng 25: 371–407.Google Scholar
  19. 19.
    R. D. Crownishield, and R. A. Brand (1981) A physiologically based criterion for muscle force prediction and locomotion. J Biomech 14: 793–801.CrossRefGoogle Scholar
  20. 20.
    S. Park, D. Krebs, and R. Mann, “Hip muscle co-contraction: evidence from concurrent in vivo pressure measurement and force estimation,” Gait Posture.vol 10, pp. 211–222, 1999.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Matej Daniel
    • 1
    • 2
  • H. Debevec
    • 2
  • A. Kristan
    • 3
  • B. Mavcic
    • 2
  • Matej Cimerman
    • 3
  • M. Tonin
    • 3
  1. 1.Laboratory of Biomechanics, Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical EngineeringCzech Technical University in PraguePragueCzech Republic
  2. 2.Laboratory of Physics, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Department of TraumatologyUniversity Medical Center LjubljanaLjubljanaSlovenia

Personalised recommendations