Shadow Resistant Direct Image Registration

  • Daniel Pizarro
  • Adrien Bartoli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)


Direct image registration methods usually treat shadows as outliers. We propose a method which registers images in a 1D shadow invariant space. Shadow invariant image formation is possible by projecting color images, expressed in a log-chromaticity space, onto an ‘intrinsic line’. The slope of the line is a camera dependent parameter, usually obtained in a prior calibration step. In this paper, calibration is avoided by jointly determining the ‘invariant slope’ with the registration parameters. The method deals with images taken by different cameras by using a different slope for each image and compensating for photometric variations. Prior information about the camera is, thus, not required. The method is assessed on synthetic and real data.


Direct Registration Shadow Invariant Photometric Camera Calibration 


  1. 1.
    Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the International Joint Conference on Artificial Intelligence (1981)Google Scholar
  2. 2.
    Baker, S., Matthews, I.: Lucas-Kanade 20 years on: A unifying framework. International Journal of Computer Vision 56(3), 221–255 (2004)CrossRefGoogle Scholar
  3. 3.
    Bartoli, A.: Groupwise Geometric and Photometric Direct Image Registration. In: BMVC’06, Proceedings of the Seventeenth British Machine Vision Conference, Edinburgh, UK, September 2006, pp. 11–20 (2006)Google Scholar
  4. 4.
    Baker, S., Gross, R., Matthews, I., Ishikawa, T.: Lucas-Kanade 20 Years ON: A Unifying Framework: Part 2. Tech. report CMU-RI-TR-03-01, Robotics Institute, Carnegie Mellon University (February 2003)Google Scholar
  5. 5.
    Baker, S., Gross, R., Matthews, I., Ishikawa, T.: Face Recognition Across Pose and Illumination. In: Li, S.Z., Jain, A.K. (eds.) Handbook of Face Recognition, Springer, Heidelberg (June 2004)Google Scholar
  6. 6.
    Finlayson, G.D., Hordley, S.D., Drew, M.S.: Removing Shadows from Images. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 823–836. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Finlayson, G.D., Drew, M.S., Lu, C.: Intrinsic Images by Entropy Minimization. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 582–595. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Barnard, K., Funt, B.: Camera characterization for color research. Color Research and Application 27(3), 153–164 (2002)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Daniel Pizarro
    • 1
  • Adrien Bartoli
    • 2
  1. 1.Department of Electronics, University of Alcala, Esc. Politecnica, 28871 Alcala de HenaresSpain
  2. 2.LASMEA, Blaise Pascal University, 24 avenue des Landais, 63411 AubiereFrance

Personalised recommendations