Model Based Cardiac Motion Tracking Using Velocity Encoded Magnetic Resonance Imaging

  • Erik Bergvall
  • Erik Hedström
  • Håkan Arheden
  • Gunnar Sparr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)


This paper deals with model based regularization of velocity encoded cardiac magnetic resonance images (MRI). We extend upon an existing spatiotemporal model of cardiac kinematics by considering data certainty and regularity of the model in order to improve its performance. The method was evaluated using a computer simulated phantom and using in vivo gridtag MRI as gold standard. We show, both quantitatively and qualitatively, that our modified model performs better than the original one.


Root Mean Square Error Regularity Term Linear Element Spatiotemporal Model Phase Contrast Magnetic Resonance Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Picano, E., Lattanzi, F., Orlandini, A., Marini, C.: Stress echocardiography and the human factor: the importance of being expert. Journal of the American College of Cardiology 83, 1262–1265 (1991)Google Scholar
  2. 2.
    McVeigh, E., Ozturk, C.: Imaging myocardial strain. IEEE Signal Processing Magazine 18(6), 44–56 (2001)CrossRefGoogle Scholar
  3. 3.
    O’Dell, W.G., Moore, C.C., Hunter, W.C., Zerhouni, E.A., McVeigh, E.R.: Three-dimensional myocardial deformations: Calculation with displacement field fitting to tagged MR images. Radiology 195(3), 829–835 (1995)Google Scholar
  4. 4.
    Axel, L., Dougherty, L.: MR imaging of motion with spatial modulation of magnetization. Radiology 171, 841–845 (1989)Google Scholar
  5. 5.
    Zerhouni, E.A., Parish, D.M., Rogers, W.J., Yang, A., Shapiro, E.P.: Human-heart-tagging with mr imaging - a method for noninvasive assessment of myocardial motion. Radiology 169(1), 59–63 (1988)Google Scholar
  6. 6.
    McVeigh, E.: MRI of myocardial function: Motion tracking techniques. Magnetic Resonance Imaging 14, 137–150 (1996)CrossRefGoogle Scholar
  7. 7.
    Masood, S., Yang, G., Pennell, D.J., Firmin, D.N.: Investigating intrinsic myocardial mechanics: The role of MR tagging, velocity phase mapping and diffusion imaging. Journal of Magnetic Resonance Imaging 12(6), 873–883 (2000)CrossRefGoogle Scholar
  8. 8.
    Osman, N.F., McVeigh, E.R., Prince, J.L.: Imaging heart motion using harmonic phase MRI. IEEE Transactions on Medical Imaging 19(3), 186–202 (2000)CrossRefGoogle Scholar
  9. 9.
    Pelc, N.J., Herfkens, R.J., Shimakawa, A., Enzmann, D.R.: Phase contrast cine magnetic resonance imaging. Magnetic Resonance Quarterly 7(4), 229–254 (1991)Google Scholar
  10. 10.
    van Wedeen, J.: Magnetic resonance imaging of myocardial kinematics. Techniques to detect, localize and quantify strain rates of the active human myocardium. Magnetic Resonance in Medicine 27(1), 52–67 (1992)CrossRefGoogle Scholar
  11. 11.
    Robson, M.D., Constable, R.T.: Three-dimensional strain-rate imaging. Magnetic Resonance in Medicine 36(4), 537–546 (1996)CrossRefGoogle Scholar
  12. 12.
    Arai, A.E., Gaither III., C.C., Epstein, F.H., Balaban, R.S., Wolff, S.D.: Myocardial velocity gradient imaging by phase contrast MRI with application to regional function in myocardial ischemia. Magnetic Resonance in Medicine 42(1), 98–109 (1999)CrossRefGoogle Scholar
  13. 13.
    Selskog, P., Heiberg, E., Ebbers, T., Wigström, L., Karlsson, M.: Kinematics of the heart: Strain-rate imaging from time-resolved three-dimensional phase contrast MRI. IEEE Transactions on Medical Imaging 21(9), 1105–1109 (2002)CrossRefGoogle Scholar
  14. 14.
    Constable, R.T., Rath, K.M., Sinusas, A.J., Gore, J.C.: Development and evaluation of tracking algorithms for cardiac wall motion analysis using phase velocity MR imaging. Magnetic Resonance in Medicine 32(1), 33–42 (1994)CrossRefGoogle Scholar
  15. 15.
    Pelc, N.J., Drangova, M., Pelc, L.R., Zhu, Y., Noll, D.C., Bowman, B.S., Herfkens, R.J.: Tracking of cyclic motion using phase contrast cine mri velocity data. Journal of Magnetic Resonance Imaging 5(3), 339–345 (1995)CrossRefGoogle Scholar
  16. 16.
    Meyer, F.G., Constable, T., Sinusas, A.J., Duncan, J.S.: Tracking myocardial deformation using phase contrast MR velocity fields: A stochastic approach. IEEE Transactions on Medical Imaging 15(4), 453–465 (1996)CrossRefGoogle Scholar
  17. 17.
    Zhu, Y., Drangova, M., Pelc, N.J.: Fourier tracking of myocardial motion using cine-PC data. Magnetic Resonance in Medicine 35(4), 471–480 (1996)Google Scholar
  18. 18.
    Zhu, Y., Drangova, M., Pelc, N.J.: Estimation of deformation gradient and strain from cine-PC velocity data. IEEE Transactions on Medical Imaging 16(6), 840–851 (1997)CrossRefGoogle Scholar
  19. 19.
    Zhu, Y., Pelc, N.J.: A spatiotemporal model of cyclic kinematics and its application to analyzing nonrigid motion with MR velocity images. IEEE Transactions on Medical Imaging 18(7), 557–569 (1999)CrossRefGoogle Scholar
  20. 20.
    Chadwick, P.: Continuum Mechanics. Dover Publications, Mineola (1999)Google Scholar
  21. 21.
    Drangova, M., Zhu, Y., Pelc, N.J.: Effects of artifacts due to flowing blood reproducibility of phase-contrast measurements of myocardial motion. Journal of Magnetic Resonance Imaging 7(4), 664–668 (1997)CrossRefGoogle Scholar
  22. 22.
    Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6), 567–585 (1989)zbMATHCrossRefGoogle Scholar
  23. 23.
    Arts, T., Hunter, C., Douglas, A., Muijtens, M.M., Reneman, R.S.: Description of the deformation of the left ventricle by a kinematic model. Journal of Biomechanics 25(10), 1119–1127 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Erik Bergvall
    • 1
    • 2
  • Erik Hedström
    • 2
  • Håkan Arheden
    • 2
  • Gunnar Sparr
    • 1
  1. 1.Centre for Mathematical Sciences, Lund Institute of Technology, LundSweden
  2. 2.Department of Clinical Physiology, Lund University Hospital, LundSweden

Personalised recommendations