Filtering Video Volumes Using the Graphics Hardware

  • Andreas Langs
  • Matthias Biedermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)


Denoising video is an important task, especially for videos captured in dim lighting environments. The filtering of video in a volumetric manner with time as the third dimension can improve the results significantly. In this work a 3D bilateral filter for edge preserving smoothing of video sequences exploiting commodity graphics hardware is presented. A hardware friendly streaming concept has been implemented to allow the processing of video sequences of arbitrary length. The clear advantage of time-based filtering compared to frame-by-frame filtering is presented as well as solutions to current limitations for volume filtering on graphics hardware. In addition, a significant speedup over a CPU based implementation is shown.


Non-Linear Filtering Graphics Hardware Video Processing 


  1. 1.
    Tomasi, C., Manduchi, R.: Bilateral Filtering for Gray and Color Images. In: ICCV, pp. 839–846 (1998)Google Scholar
  2. 2.
    Fischer, J., Bartz, D., Straßer, W.: Stylized Augmented Reality for Improved Immersion. In: Proceedings of IEEE Virtual Reality (VR 2005), pp. 195–202 (2005)Google Scholar
  3. 3.
    Hájek, J.: Timespace Reconstruction of Videosequences. In: 6th Central European Seminar on Computer Graphics (CESCG) (2002)Google Scholar
  4. 4.
    Daniel, G., Chen, M.: Visualising Video Sequences Using Direct Volume Rendering. In: Proceedings Vision, Video, and Graphics, VVG 2003, University of Bath, UK, July 10-11 (2003)Google Scholar
  5. 5.
    Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A Survey of General-Purpose Computation on Graphics Hardware. Computer Graphics Forum, vol. 26 (to appear) (2007)Google Scholar
  6. 6.
    Blythe, D.: The Direct3D 10 system. ACM Trans. Graph. 25(3), 724–734 (2006)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Barash, D.: Bilateral Filtering and Anisotropic Diffusion: Towards a Unified Viewpoint. In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106, pp. 273–280. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Pham, T.Q., van Vliet, L.J.: Separable bilateral filtering for fast video preprocessing. In: ICME 2005: IEEE International Conference on Multimedia & Expo, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  9. 9.
    Harris, M.J., Baxter, W.V., Scheuermann, T., Lastra, A.: Simulation of cloud dynamics on graphics hardware. In: HWWS ’03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, Eurographics Association (2003)Google Scholar
  10. 10.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Processing 13 (2004)Google Scholar
  11. 11.
    Viola, I., Kanitsar, A., Gröller, M.E.: Hardware-Based Nonlinear Filtering and Segmentation using High-Level Shading Languages. In: Proceedings of IEEE Visualization, IEEE, New York (2003)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Andreas Langs
    • 1
  • Matthias Biedermann
    • 1
  1. 1.Universität Koblenz-Landau, Universitätsstrasse 1, 56070 KoblenzGermany

Personalised recommendations