Surface-to-Surface Registration Using Level Sets

  • Mads Fogtmann Hansen
  • Søren Erbou
  • Martin Vester-Christensen
  • Rasmus Larsen
  • Bjarne Ersbøll
  • Lars Bager Christensen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)


This paper presents a general approach for surface-to-surface registration (S2SR) with the Euclidean metric using signed distance maps. In addition, the method is symmetric such that the registration of a shape A to a shape B is identical to the registration of the shape B to the shape A.

The S2SR problem can be approximated by the image registration (IR) problem of the signed distance maps (SDMs) of the surfaces confined to some narrow band. By shrinking the narrow bands around the zero level sets the solution to the IR problem converges towards the S2SR problem. It is our hypothesis that this approach is more robust and less prone to fall into local minima than ordinary surface-to-surface registration. The IR problem is solved using the inverse compositional algorithm.

In this paper, a set of 40 pelvic bones of Duroc pigs are registered to each other w.r.t. the Euclidean transformation with both the S2SR approach and iterative closest point approach, and the results are compared.


Mean Square Error Maximum Error Image Registration Iterative Close Point Registration Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baker, S., Matthews, I.: Lucas-Kanade 20 Years On: A unifying Framework. CMU, Part 1 (2002)Google Scholar
  2. 2.
    Besl, P.J., Mckay, N.D.: A Method for Registration of 3-D Shapes. IEEE Transaction on Pattern Analysis and Machine Intelligence 14, 239–256 (1992)CrossRefGoogle Scholar
  3. 3.
    Bærentzen, A.: Robust Generation of Signed Distance Fields from Triangle Meshes. In: Fourth International Workshop on Volume Graphics (2005)Google Scholar
  4. 4.
    Bærentzen, A., Aanæs, H.: Signed Distance Computation using the Angle Weighted Pseudo-normal. IEEE Transactions on Visualization and Computer Graphics 11, 243–253 (2005)CrossRefGoogle Scholar
  5. 5.
    Darkner, S., Vester-Christensen, M., Larsen, R., Nielsen, C., Paulsen, R.R.: Automated 3D Rigid Registration of Open 2D Manifolds. In: MICCAI 2006 Workshop From Statistical Atlases to Personalized Models (2006)Google Scholar
  6. 6.
    Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J., Taylor, C.J.: A minimum description length approach to statistical shape modelling. IEEE Transactions on Medical Imaging (2002)Google Scholar
  7. 7.
    Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. John Wiley, New York (1998)zbMATHGoogle Scholar
  8. 8.
    Fitzgibbon, A.: Robust Registration of 2D and 3D Point Sets. In: Proc. British Machine Vision Conference, vol, II (2001)Google Scholar
  9. 9.
    Gower, J.C.: Generalized procrustes analysis. Psychometrika (1975)Google Scholar
  10. 10.
    Granger, S., Pennec, X.: Multi-scale EM-ICP: A Fast and Robust Approach for Surface Registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 418–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Rusinkiewicz, S., Levoy, M.: Efficient Variants of the ICP Algorithm. In: 3DIM 2001 (2001)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Mads Fogtmann Hansen
    • 1
  • Søren Erbou
    • 1
  • Martin Vester-Christensen
    • 1
  • Rasmus Larsen
    • 1
  • Bjarne Ersbøll
    • 1
  • Lars Bager Christensen
    • 2
  1. 1.Technical University of Denmark 
  2. 2.Danish Meat Research Institute 

Personalised recommendations