Reconstruction of 3D Curves for Quality Control

  • Hanna Martinsson
  • Francois Gaspard
  • Adrien Bartoli
  • Jean-Marc Lavest
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)

Abstract

In the area of quality control by vision, the reconstruction of 3D curves is a convenient tool to detect and quantify possible anomalies. Whereas other methods exist that allow us to describe surface elements, the contour approach will prove to be useful to reconstruct the object close to discontinuities, such as holes or edges.

We present an algorithm for the reconstruction of 3D parametric curves, based on a fixed complexity model, embedded in an iterative framework of control point insertion. The successive increase of degrees of freedom provides for a good precision while avoiding to over-parameterize the model. The curve is reconstructed by adapting the projections of a 3D NURBS snake to the observed curves in a multi-view setting.

Keywords

Control Point Active Contour Candidate Point Virtual Image NURBS Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automated Control 19(6), 716–723 (1974)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brigger, P., Hoeg, J., Unser, M.: B-spline snakes: A flexible tool for parametric contour detection. IEEE Trans. on Image Processing 9(9), 1484–1496 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cham, T.-J., Cipolla, R.: Stereo coupled active contours. In: Conference on Computer Vision and Pattern Recognition, pp. 1094–1099. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  4. 4.
    Cham, T.-J., Cipolla, R.: Automated B-spline curve representation incorporating MDL and error-minimizing control point insertion strategies. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(1), 49–53 (1999)CrossRefGoogle Scholar
  5. 5.
    Dierckx, P.: Curve and Surface Fitting with Splines. Oxford University Press, Inc., New York (1993)MATHGoogle Scholar
  6. 6.
    Drummond, T., Cipolla, R.: Real-time visual tracking of complex structures. IEEE Transactions on Pattern Analysis and Machine Intelligence 7, 932–946 (2002)CrossRefGoogle Scholar
  7. 7.
    Hansen, M.H., Yu, B.: Model selection and the principle of minimum description length. Journal of the American Statistical Association 96(454), 746–774 (2001)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kahl, F., August, J.: Multiview reconstruction of space curves. In: 9th International Conference on Computer Vision, vol. 2, pp. 1017–1024 (2003)Google Scholar
  9. 9.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 4(1), 321–331 (1987)Google Scholar
  10. 10.
    Meegama, R.G.N., Rajapakse, J.C.: NURBS snakes. Image and Vision Computing 21, 551–562 (2003)CrossRefGoogle Scholar
  11. 11.
    Piegl, L., Tiller, W.: The NURBS book, 2nd edn. Monographs in visual communication. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)MATHCrossRefGoogle Scholar
  13. 13.
    Schwarz, G.: Estimating the dimension of a model. Ann. of Stat. 6, 461–464 (1978)MATHCrossRefGoogle Scholar
  14. 14.
    Siddiqui, M., Sclaroff, S.: Surface reconstruction from multiple views using rational B-splines and knot insertion. In: First International Symposium on 3D Data Processing Visualization and Transmission, pp. 372–378 (2002)Google Scholar
  15. 15.
    Xiao, Y.J., Li, Y.F.: Stereo vision based on perspective invariance of NURBS curves. In: IEEE International Conference on Mechatronics and Machine Vision in Practice, vol. 2, pp. 51–56. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  16. 16.
    Yang, H., Wang, W., Sun, J.: Control point adjustment for B-spline curve approximation. Computer-Aided Design 36, 639–652 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Hanna Martinsson
    • 1
  • Francois Gaspard
    • 2
  • Adrien Bartoli
    • 2
  • Jean-Marc Lavest
    • 2
  1. 1.CEA, LIST, Boîte Courrier 94, F-91 191 Gif sur YvetteFrance
  2. 2.LASMEA (CNRS/UBP), 24 avenue des Landais, F-63 177 AubièreFrance

Personalised recommendations