Advertisement

Performance Evaluation of Adaptive Residual Interpolation, a Tool for Inter-layer Prediction in H.264/AVC Scalable Video Coding

  • Koen De Wolf
  • Davy De Schrijver
  • Jan De Cock
  • Wesley De Neve
  • Rik Van de Walle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)

Abstract

Inter-layer prediction is the most important technique for improving coding performance in spatial enhancement layers in Scalable Video Coding (SVC). In this paper we discuss Adaptive Residual Interpolation (ARI), a new approach to inter-layer prediction of residual data. This prediction method yields a higher coding performance. We integrated the ARI tool in the Joint Scalable Video Model software. Special attention was paid to the CABAC context model initialization. Further, the use, complexity, and coding performance of this technology is discussed. Three filters were tested for the interpolation of lower-layer residuals: a bi-linear filter, the H.264/AVC 6-tap filter, and a median filter. Tests have shown that ARI prediction results in an average bit rate reduction of 0.40 % for the tested configurations without a loss in visual quality. In a particular test case, a maximum bit rate reduction of 10.10 % was observed for the same objective quality.

Keywords

Motion Estimation Scalable Video Code Enhancement Layer Syntax Element Residual Prediction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Reichel, J., Schwarz, H., Wien, M.: Joint scalable video model JSVM 5, doc. JVT-R202 (2006)Google Scholar
  2. 2.
    ISO/IEC, JTC1/SC29/WG11: Applications and requirements for scalable video coding. ISO/IEC JTC1/SC29/WG11 N6880 (2005)Google Scholar
  3. 3.
    ITU-T, ISO/IEC JTC 1: Advanced video coding for generic audiovisual services, ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC (2003)Google Scholar
  4. 4.
    Schwarz, H., Marpe, D., Wiegand, T.: Basics concepts for supporting spatial and SNR scalability in the scalable H.264/MPEG4-AVC extension. In: Proceedings of IEEE IWSSIP (2005)Google Scholar
  5. 5.
    De Wolf, K., De Schrijver, D., De Neve, W., Van de Walle, R.: Adaptive Residual Interpolation: a tool for efficient spatial scalability in digital video coding. In: Proceedings of International Conference on Image Processing, Computer Vision & Pattern Recognition (IPCV’06), vol.1, Las Vegas, pp. 131–137 (2006)Google Scholar
  6. 6.
    De Wolf, K., De Sutter, R., De Neve, W., Van de Walle, R.: Comparison of prediction schemes with motion information reuse for low complexity spatial scalability. In: Visual Communications and Image Processing, Beijing. Proceedings of SPIE, vol. 5960, pp. 1911–1920 (2005)Google Scholar
  7. 7.
    Wiegand, T., Sullivan, G., Bjøntegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. CS Video Technology 13, 560–576 (2003)CrossRefGoogle Scholar
  8. 8.
    Horowitz, M., Joch, A., Kossentini, F., Hallapuro, A.: H.264/AVC baseline profile decoder complexity analysis. IEEE Trans. CS Video Technology 13, 704–716 (2003)CrossRefGoogle Scholar
  9. 9.
    Marpe, D., Wiegand, T., Schwarz, H.: Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans. CS Video Technology 13, 620–636 (2003)CrossRefGoogle Scholar
  10. 10.
    Bjøntegaard, G.: Calculation of average PSNR difference between RD-curves, VCEG-M33 (2001)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Koen De Wolf
    • 1
  • Davy De Schrijver
    • 1
  • Jan De Cock
    • 1
  • Wesley De Neve
    • 1
  • Rik Van de Walle
    • 1
  1. 1.Ghent University – IBBT, Department of Electronics and Information Systems – Multimedia Lab, Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-GhentBelgium

Personalised recommendations