Single View Motion Tracking by Depth and Silhouette Information

  • Daniel Grest
  • Volker Krüger
  • Reinhard Koch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)


In this work a combination of depth and silhouette information is presented to track the motion of a human from a single view. Depth data is acquired from a Photonic Mixer Device (PMD), which measures the time-of-flight of light. Correspondences between the silhouette of the projected model and the real image are established in a novel way, that can handle cluttered non-static backgrounds. Pose is estimated by Nonlinear Least Squares, which handles the underlying dynamics of the kinematic chain directly. Analytic Jacobians allow pose estimation with 5 FPS.


optical motion capture articulated objects pose estimation cue-integration 


  1. 1.
    Bray, M., Koller-Meier, E., Mueller, P., Van Gool, L., Schraudolph, N.N.: 3D Hand Tracking by Rapid Stochastic Gradient Descent Using a Skinning Model. In: CVMP, March 2004, IEE (2004)Google Scholar
  2. 2.
    Bregler, C., Malik, J.: Tracking people with twists and exponential maps. In: Proceeding IEEE CVPR, pp. 8–15 (1998)Google Scholar
  3. 3.
    Chong, E.K.P., Zak, S.H.: An Introduction to Optimization, 2nd edn. Wiley, Chichester (2001)zbMATHGoogle Scholar
  4. 4.
    Mündermann, L., et al.: Validation Of A Markerless Motion Capture System For The Calculation Of Lower Extremity Kinematics. In: Proc. American Society of Biomechanics, Cleveland, USA (2005)Google Scholar
  5. 5.
    Goldenstein, S., Vogler, C., Metaxas, D.: Statistical Cue Integration in DAG Deformable Models. PAMI 25(7), 801–813 (2003)Google Scholar
  6. 6.
    Grest, D., Herzog, D., Koch, R.: Human Model Fitting from Monocular Posture Images. In: Proc. of VMV (November 2005)Google Scholar
  7. 7.
    Grest, D., Woetzel, J., Koch, R.: Nonlinear Body Pose Estimation from Depth Images. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 285–292. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Kakadiaris, I., Metaxas, D.: Model-Based Estimation of 3D Human Motion. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) 22(12) (2000)Google Scholar
  9. 9.
    Moeslund, T.B., Hilton, A., Krüger, V.: A Survey of Advances in Vision-Based Human Motion Capture Analysis. Journal of CVIU (2006)Google Scholar
  10. 10.
    Möller, T., Kraft, H., Frey, J., Albrecht, M., Lange, R.: Robust 3D Measurement with PMD Sensors. In: IEEE PacRim (2005)Google Scholar
  11. 11.
    Niskanen, M., Boyer, E., Horaud, R.: Articulated motion capture from 3-D points and normals. In: CVMP, London (2005)Google Scholar
  12. 12.
    Plänkers, R., Fua, P.: Model-Based Silhouette Extraction for Accurate People Tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 325–339. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Rosenhahn, B., Kersting, U.G., Smith, A.W., Gurney, J.K., Brox, T., Klette, R.: A System for Marker-Less Human Motion Estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 230–237. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Daniel Grest
    • 1
  • Volker Krüger
    • 1
  • Reinhard Koch
    • 2
  1. 1.Aalborg University Copenhagen, Denmark, Aalborg Media Lab 
  2. 2.Christian-Albrechts-University Kiel, Germany, Multimedia Information Processing 

Personalised recommendations