Automated Mottling Assessment of Colored Printed Areas

  • Albert Sadovnikov
  • Lasse Lensu
  • Heikki Kälviäinen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)

Abstract

Mottling is one of the most significant defects in modern offset printing using coated papers. Mottling can be defined as undesired unevenness in perceived print density. Previous research in the field considered only gray scale prints. In our work, we extend current methodology to color prints. Our goal was to study the characteristics of the human visual system, perform psychometric experiments and develop methods which can be used at industrial level applications. We developed a method for color prints and extensively tested it with a number of experts and laymen. Suggested approach based on pattern-color perception separability proved to correlate with the human evaluation well.

Keywords

Gray Scale Human Visual System Color Orientation Contrast Sensitivity Function Sinusoidal Grating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    ISO/IEC: 13660:2001(e) standard. information technology - office equipment - measurement of image quality attributes for hardcopy output - binary monochrome text and graphic images. ISO/IEC (2001)Google Scholar
  2. 2.
    Briggs, J., Forrest, D., Klein, A., Tse, M.-K.: Living with ISO-13660: Pleasures and perils. In: IS&Ts NIP 15: 1999 International Conference on Digital Printing Technologies, pp. 421–425. IS&T, Springfield VA (1999)Google Scholar
  3. 3.
    Wolin, D.: Enhanced mottle measurement. In: PICS 2002: IS&T’s PICS conference, pp. 148–151. IS&T (2002)Google Scholar
  4. 4.
    Armel, D., Wise, J.: An analytic method for quantifying mottle - part 1. Flexo, 70–79 (December 1998)Google Scholar
  5. 5.
    Armel, D., Wise, J.: An analytic method for quantifying mottle - part 2. Flexo, 38–43 (January 1999)Google Scholar
  6. 6.
    Streckel, B., Steuernagel, B., Falkenhagen, E., Jung, E.: Objective print quality measurements using a scanner and a digital camera. In: DPP 2003: IS&T International Conference on Digital Production Printing and Industrial Applications, pp. 145–147 (2003)Google Scholar
  7. 7.
    Johansson, P.Å.: Optical Homogeniety of Prints. PhD thesis, Kunglika Tekniska Högskolan, Stockholm (1999)Google Scholar
  8. 8.
    Rosenberger, R.R.: Stochastic frequency distribution analysis as applied to ink jet print mottle measurement. In: IS&Ts NIP 17: 2001 International Conference on Digital Printing Technologies, pp. 808–812. IS&T, Springfield, VA (2001)Google Scholar
  9. 9.
    Sadovnikov, A., Lensu, L., Kamarainen, J.-K., Kälviäinen, H.: Quantified and Perceived Unevenness of Solid Printed Areas. In: Sanfeliu, A., Cortés, M.L. (eds.) CIARP 2005. LNCS, vol. 3773, pp. 710–719. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Barten, P.: Contrast Sensitivity of the Human Eye and its Effects on Image Quality. SPIE (1999)Google Scholar
  11. 11.
    Schade, O.H.: Optical and photoelectric analog of the eye. Journal of the Optical Society of America 46, 721–739 (1956)CrossRefGoogle Scholar
  12. 12.
    Kang, H.R.: Digital Color Halftoning. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  13. 13.
    Campbell, F.W., Carpenter, R.H.S., Levinson, J.Z.: Visibility of aperiodic patterns compared with that of sinusoidal gratings. Journal of Physiology 204, 283–298 (1969)Google Scholar
  14. 14.
    Palmer, S.: Vision Science: Photons to Phenomenology, 1st edn. MIT Press, Cambridge (1999)Google Scholar
  15. 15.
    Mannos, J., Sakrison, D.: The effects of a visual fidelity criterion on the encoding of images. IEEE Transactions on Information Theory 20(4), 525–536 (1974)MATHCrossRefGoogle Scholar
  16. 16.
    Poirson, A., Wandell, B.: Pattern-color separable pathways predict sensitivity to simple colored patterns. Vision Research 36, 515–526 (1996)CrossRefGoogle Scholar
  17. 17.
    Engeldrum, P.G.: Psychometric Scaling: A Toolkit For Imaging Systems Development, 1st edn. Imcotec Press, Winchester (2000)Google Scholar
  18. 18.
    Sadovnikov, A., Salmela, P., Lensu, L., Kamarainen, J.-K., Kälviäinen, H.: Mottling Assessment of Solid Printed Areas and Its Correlation to Perceived Uniformity. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 409–418. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Sadovnikov, A., Lensu, L., Kämäräinen, J., Kälviäinen, H.: Model based generation of random stimuli and parameter analysis for print unevenness evaluation. In: Proceedings of the 29th European Conference on Visual Perception, St. Petersburg, Russia, pp. 49–50 (2006)Google Scholar
  20. 20.
    Johnson, G., Fairchild, M.A.: A top down description of S-CIELAB and CIEDE2000. Color Research and Application 28(6), 425–435 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Albert Sadovnikov
    • 1
  • Lasse Lensu
    • 1
  • Heikki Kälviäinen
    • 1
  1. 1.Machine Vision and Pattern Recognition Group, Laboratory of Information Processing, Department of Information Technology, Lappeenranta University of Technology, P.O.Box 20, 53851 LappeenrantaFinland

Personalised recommendations