Evaluating a General Class of Filters for Image Denoising

  • Luis Pizarro
  • Stephan Didas
  • Frank Bauer
  • Joachim Weickert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)


Recently, an energy-based unified framework for image denoising was proposed by Mrázek et al. [10], from which existing nonlinear filters such as M-smoothers, bilateral filtering, diffusion filtering and regularisation approaches, are obtained as special cases. Such a model offers several degrees of freedom (DOF) for tuning a desired filter. In this paper, we explore the generality of this filtering framework in combining nonlocal tonal and spatial kernels. We show that Bayesian analysis provides suitable foundations for restricting the parametric space in a noise-dependent way. We also point out the relations among the distinct DOF in order to guide the selection of a combined model, which itself leads to hybrid filters with better performance than the previously mentioned special cases. Moreover, we show that the existing trade-off between the parameters controlling similarity and smoothness leads to similar results under different settings.


  1. 1.
    Bard, J.: Practical Bilevel Optimization. Algorithms and Applications. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Besag, J.: Toward bayesian image analysis. Journal of Applied Statistics 16(3), 395–407 (1989)CrossRefGoogle Scholar
  3. 3.
    Bouman, C., Sauer, K.: A generalized gaussian image model for edge-preserving MAP estimation. IEEE Transactions on Image Processing 2(3), 296–310 (1993)CrossRefGoogle Scholar
  4. 4.
    Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: Proc. IEEE International Conference on Image Processing (ICIP-94), vol. 2, Austin, Nov. 13-16, 1994, pp. 168–172 (1994)Google Scholar
  5. 5.
    Chu, C.K., Glad, I.K., Godtliebsen, F., Marron, J.S.: Edge-preserving smoothers for image processing. Journal of the American Statistical Association 93(442), 526–541 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Didas, S., Mrazek, P., Weickert, J.: Energy-based image simplification with nonlocal data and smoothness terms. In: Iske, A., Levesley, J. (eds.) Algorithms for Approximation, pp. 51–60. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Herman, G.T., Hurwitz, H., Lent, A., Lung, H.-P.: On the bayesian approach to image reconstruction. Information and Control 42, 60–71 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Koenderink, J.J., Van Doorn, A.L.: The structure of locally orderless images. International Journal of Computer Vision 31(2-3), 159–168 (1999)CrossRefGoogle Scholar
  9. 9.
    Künsch, H.R.: Robust priors for smoothing and image restoration. Annals of the Institute of Statistical Mathematics 46, 1–19 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Mrázek, P., Weickert, J., Bruhn, A.: On robust estimation and smoothing with spatial and tonal kernels. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties for Incomplete Data. Computational Imaging and Vision, vol. 31, Springer, Heidelberg (Nov. 2005)Google Scholar
  11. 11.
    Mumford, D., Shah, J.: Optimal approximation of piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42, 577–685 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM Journal on Numerical Analysis 40(3), 965–994 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Nikolova, M.: Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. Multiscale Modeling & Simulation 4(3), 960–991 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)CrossRefGoogle Scholar
  15. 15.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)CrossRefzbMATHGoogle Scholar
  16. 16.
    Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics Doklady 4(2), 1035–1038 (1963)Google Scholar
  17. 17.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and colour images. In: Proc. of the 1998 IEEE International Conference on Computer Vision, Bombay, India, Jan. 1998, pp. 839–846. Narosa Publishing House, New Delhi (1998)Google Scholar
  18. 18.
    Winkler, G.: Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction. Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Luis Pizarro
    • 1
  • Stephan Didas
    • 1
  • Frank Bauer
    • 1
  • Joachim Weickert
    • 1
  1. 1.Mathematical Image Analysis Group, Faculty of Mathematics and Computer Science, Building E1 1, Saarland University, 66041 SaarbrückenGermany

Personalised recommendations